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ABSTRACT. We explain how the geometric framework introduced in arXiv:2508.11621 [math.AG]
provides a universal property for the 2-rings of perfect complexes on qcgs spectral or Dirac spectral
schemes. As an application, given a qcqs spectral or Dirac spectral scheme X this produces a
comparison morphism from Spec Perfx to X itself, which is moreover natural in X. When X is an
ordinary qcgs scheme, this construction supplies a new proof of the Balmer-Thomason reconstruction
of X from its space of thick subcategories, assuming the result for noetherian rings due to Neeman.
As another application, we find spectral and Dirac spectral enhancements of support varieties arising
for 2-rings in representation theory which “geometrize” the 2-rings that produce them. For example,
given a finite group G over a field k, this produces a “spectral support variety” Vg such that Perfy
maps into the stable module category of kG. We derive these results as a corollary of a general
affineness criterion for 2-schemes which are covered by the Zariski spectra of rigid 2-rings: this states
that such 2-schemes are affine if and only if they are quasicompact and quasiseparated.
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1. INTRODUCTION

1.A. Schemes in classical algebraic geometry. Affine varieties, say over C, are zero sets of
collections of polynomial equations in AZ. Affine varieties have the decidedly nice feature that for two
affine varieties V, W, regular maps between V and W may be identified with maps of commutative
C-algebras between O(W) and O(V), their corresponding rings of reqular functions into the base
field C. Classical algebraic geometry over the complex numbers deals with the study of complex
varieties, which are topological spaces admitting an open cover by affine varieties.

Given two complex varieties M and N, it is not necessarily the case that maps between M and N
are determined by maps between their rings of regular functions into C, although this ¢s the case
whenever the target is affine. Since they are locally affine, it is possible to compute maps between M
and N by “gluing” maps between their corresponding affine open subsets. In this way the geometry of
complex varieties is rendered accessible, but being a more general class they afford the construction
of interesting objects to map to, or moduli objects, which bear import even if one is only interested
in affine varieties.

Ezxample (Complex projective space). The projective space Pg’l is a complex variety whose points
parametrize the linear subspaces of the vector space C". Maps from a variety M into Pg‘l exactly
parametrizes subspaces E € A x M which are fiberwise linear over M.

Following Zariski-Grothendieck, let us regard the objects above not merely as topological spaces,
but in their following guise.

Recollection. The category of locally ringed spaces consists of pairs (X, Ox), where X is a topological
space and Oy is a sheaf of commutative rings on X satisfying a certain locality condition. Any
ordinary commutative ring R arises as the global sections of a structure sheaf on a particular
topological space Spec R, its classical Zariski spectrum. Spec R along with its structure sheaf is the
primary example of a locally ringed space, and the functor sending R to the locally ringed space
Spec R participates in the following adjunction:

(1.1) I' : {Locally ringed spaces} 2 {Commutative rings}°? : Spec
and the essential image of the functor Spec is said to comprise exactly the affine schemes.

Affine schemes implement affine varieties, which essentially appear within the Zariski spectra of
their rings of regular functions. In this case, the adjunction of (1.1) exactly recovers the characteristic
mapping property discussed in the first paragraph. It remains to implement the study of non-affine
varieties in this language, for which one makes the following definition.
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Recollection. Let (X, Ox) be a locally ringed space. If X admits an open cover {Ug }4c4 Where each
(Ua, Ox|u,,) may be identified with Spec R, for some commutative ring R,, we say that (X, Ox) is
a scheme.

Although the definitions above are motivated by complex algebraic geometry, the generality of the
Zariski spectrum applies to the full gamut of interesting commutative rings which arise in arithmetic
and geometry. As before, even if one is only concerned with the study of commutative rings, the
category of schemes includes several interesting non-affine moduli to map affine objects to:

Ezxample (Projective space). Given a commutative ring R, the following set

{(£, ¢) | £ an invertible module over R, ¢ : @7:1 R —» L an R-linear surjection}

{R - linear isomorphisms which intertwine the given surjection}

is naturally identified with the set of maps of locally ringed spaces from Spec R to the non-affine
scheme P%‘l.

To summarize, commutative rings appear as global sections of the structure sheaf on an affine
scheme. In this form, geometric methods may be applied towards their study, and such methods will
essentially employ non-affine objects.

1.B. Affine moduli in higher Zariski geometry. Tensor-triangular geometry, after [Balll], is
the study of tensor-triangulated categories (or tt-categories) via the use of algebro-geometric methods.
This approach, at least philosophically, regards tt-categories as arising from the global sections
of “structure sheaf of tt-categories” on the affine objects in a tt-analogue of algebraic geometry.
This is unfortunately only a heuristic: there are problems with treating structure sheaves valued in
tt-categories, as triangulated structure is poorly behaved with respect to forming limits in ordinary
categories.

To pursue a geometric program which putatively includes non-affine objects, we must replace
tensor-triangulated categories with a better behaved notion. To this end, we work in the oo-category
of 2-rings, denoted 2CAlg, defined to be the co-category of idempotent-complete stably symmetric
monoidal co-categories with symmetric monoidal exact functors. In this setting, the idea that 2-rings
appear as the affine objects of a categorified algebraic geometry can be made precise. This is
accomplished in [HZG], utilising the formalism of geometries introduced in [DAGV].

Recollection. Let 2CAlg denote the oo-category of 2-rings. There is an oco-category of locally
2-ringed spaces, consisting of pairs X a topological space and O € Shv(X;2CAlg) a sheaf of 2-rings
on X, where the sheaf O is required to satisfy a certain locality condition?. There is a functor

Spec : 2CAlg°? — {Locally 2-ringed spaces}
known as the Zariski spectrum, which is the right adjoint in an adjunction of the following form
I' : {Locally 2-ringed spaces} & 2CAlg®? : Spec

where I" sends a pair (X, Ox) to the global sections of the sheaf O on X. The essential image of the
functor Spec is said to comprise the affine 2-schemes.

If schemes in classical algebraic geometry provide interesting non-affine objects which apply towards
the study of ordinary rings, it seems only natural that their obvious categorification ought have
interesting applications to the study of 2-rings.

2see Subsection 2.C for a full discussion
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Definition. A locally 2-ringed space (X, Ox) is a 2-scheme if it admits an open cover {U,} such
that the locally 2-ringed spaces (U, Ox|u,) =~ Spec K, for K, € 2CAlg. We say it is a rigid 2-scheme
if the K, can be selected to be rigid 2-rings, see Definition 2.15.

The main result of this paper provides a characterization of rigid affine 2-schemes among the
collection of all rigid 2-schemes. Recall that a topological space is quasiseparated if the intersection
of any two quasicompact open subsets is quasicompact.

Theorem A. Let (X,0x) be a rigid 2-scheme. Then (X, Ox) is an affine 2-scheme if and only if
the underlying topological space X is quasicompact and quasiseparated (or gcgs).

The result above shows that higher Zariski geometry behaves in stark contrast to classical algebraic
geometry, where most non-affine schemes of interest are qcgs, e.g., projective space over any base
ring and any closed subscheme thereof. We view this as a feature rather than a bug: it demonstrates
the category of 2-rings already contains the representing objects for many moduli problems. In our
next result, we utilise our affineness criterion to demonstrate that a particular class of higher Zariski
moduli problems arise as affine 2-schemes. In doing so, we provide a new universal property of the
2-ring of perfect complexes on a qcgs scheme.

Recollection. Let CAlg denote the co-category of Eo-rings, the higher-categorical enhancement of
ordinary commutative rings. Recall that there is a limit-preserving functor

R(_y : 2CAlg ~ CAlg

given by sending a 2-ring X to the endomorphism ring spectrum End, (1) of the unit object 1 € X.
Thus, to any a locally 2-ringed space (X, Q), one may associate the pair (X, Ro), where Ry is the
sheaf of Eo-rings given by

:Ro U~ :RO(U) = Endo(u)(l).

The space X along with this sheaf can be shown to be a locally spectrally ringed space: this is the
oo-category consisting of pairs (X, Q) of a topological space X equipped with a sheaf O of E,, rings

on X satisfying a certain locality condition analogous to that of ordinary locally ringed spaces®.

The previous recollection yields a restriction functor
{Locally 2-ringed spaces} — {Locally spectrally ringed spaces}

given by sending a pair (X, Q) to the pair (X, Rg). This restriction functor will give rise to a natural
family of moduli problems:

Definition. Let X be a spectral scheme* (of which ordinary schemes are an example). Define the
relative spectrum of X to be the unique locally 2-ringed space Spec? X satisfying the following:

map((Y, Oy), Spect X) = map((¥, Roy ), X)

for (Y, Oy) any arbitrary locally 2-ringed space. In the above, the left hand mapping space is taken
in locally 2-ringed spaces, and the right-hand mapping space is taken in locally spectrally ringed
spaces.

3see Subsection 2.A for a full discussion

45ee Definition 3.15 for the full definition.
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The restriction morphism from locally 2-ringed spaces to locally spectrally ringed spaces may also
be obtained via the general framework of geometries outlined in [DAGV]. In Section 2.1 of loc. cit.
the author constructs the relative spectrum of any locally spectrally ringed space, and functorially
so, as a left adjoint to the restriction functor (with the caveat that one needs to work with locally
2/spectrally ringed topoi in lieu of topological spaces). These results in fully generality are recalled
in Subsection 2.C.

The upshot is that relative spectra always exist, and our next result show that these moduli
problems are in fact associated to affine schemes.

Theorem B. Given a qcgs spectral scheme X, its relative spectrum Spec% X 18 a rigid qcgs 2-scheme.
Hence, it is an affine 2-scheme by Theorem A. The global sections of SpecfX may be naturally
identified with the 2-ring Perfx of perfect complexes on X (Definition 5.1), furnishing an identification

Spec? X ~ Spec Perfyx .
These equivalences are natural in the spectral scheme X.
We also show that the result above holds in the case of Dirac spectral schemes, see Definition 3.15.

Remark 1.2. Theorem B can be regarded as an instance of the “l-affineness” philosophy of [Gail4]
for qcqgs spectral schemes. In fact, alongside the the descent results of [HZG, §5], Theorem B will
recover the fact that such spectral schemes are 1-affine, demonstrated in [Gail4, §5]. It will also
supply the expected extension of these results to the Dirac spectral case.

In [HZG], it is shown that the functor Spec from 2-rings to locally 2-ringed spaces restricts to a fully
faithful functor on the full subcategory 2CAlg,;, € 2CAlg of rigid 2-rings. As an immediate corollary,
we obtain the following, which is a new universal property for the 2-ring of perfect complexes on a
spectral scheme.

Corollary C. For a rigid 2-ring X and a qcqs spectral scheme X, there is an identification
mapycalg (Perfx, X) ~ map((Spec K, Rog,..«)> X)

where the right-hand mapping space is taken in locally spectrally ringed spaces. Moreover, these
equivalences are natural in both the 2-ring X and the spectral scheme X.

As above, we also demonstrate that Corollary C holds in the Dirac spectral setting. In the next
subsection, we discuss some immediate consequences of this result.

1.C. Reconstruction of schemes and geometrization of 2-rings. Given a qcqgs ordinary scheme
X, a pioneering result of tensor-triangular geometry due to Thomason [Tho97|, building off work
of Hopkins [Hop87] and Neeman [NB92|, identifies the underlying space of Spec Perfx with the
underlying space of X.

In [Bal02] Balmer provides a way to recover X as a locally ringed space, by working with a
tt-categorical implementation of the structure sheaf on Spec Perfyx. Using the framework above, we
are able to recover and enhance his result to include derived objects.

Observation. Let X be a spectral scheme. Then recall that the universal property of Corollary C
furnishes a comparison map of locally spectrally ringed spaces

’)/X . (Spec Peer’ iR’OSpccPcrfx) - X

induced by the identity functor on Perfy, which is moreover natural in the spectral scheme X.
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Theorem D. If X is an ordinary qcqs scheme regarded as a spectral scheme, the comparison map
vx constructed above is an equivalence.

We remark that this also provides a new proof of Thomason’s result, assuming Neeman’s clas-
sification result for the case where X is an ordinary affine noetherian scheme. We touch upon the
qualitative differences to Thomason’s approach in Remark 5.14. Finally, we show that Corollary C
gives a simple method for “geometrizing” certain 2-rings.

Theorem E. Let X be a 2-ring such that the locally spectrally ringed space (SpecX, Rog . o) 1S
itself a spectral scheme. Then there is a fully faithful embedding

Perf(specg{,gqospecx) - K
induced by the identity functor on (Spec K, Rog,, ) via the universal property of Corollary C.

Theorem E is a special case of a slightly stronger statement, which is collected in Theorem 6.9.
However, just this case is already sufficient for a broad swath of applications:

Example. Let G be a finite group and k a field of characteristic dividing the order of G. The
stable module category of kG, denoted Stig, is a 2-ring which exactly captures the failure of the
representation theory of G over k to be semisimple (see Example 6.7 for a precise definition). In the
linked example, we show that (SpecStig,Ro) is itself a spectral scheme whose underlying classical
scheme is identified with Proj H*(G, k). We refer to this spectral scheme as the spectral support
variety, and denote it by V. Theorem E now supplies a fully faithful embedding

Perfy, < Stig
which is moreover functorial in the group G.

Such a map is constructed in [Mat16, §9| by hand for the case of G elementary abelian, and in
fact Mathew’s observation in loc. cit. formed the genesis for this paper’s investigation. In [Mat15b],
Mathew utilizes this embedding to provide a new proof of Dade’s theorem via spectral algebraic
geometry. A shadow of the same is recovered by work of [BallOa], which constructs an injective
homomorphism from the Picard group of lines bundles on the variety Proj H*(G, k) to the group
of invertible objects of Strg, after inverting the characteristic of the base field, and also by hand.
The embedding Perfy, — Stig unifies these two observations, and moreover supplies a functoriality
result for Balmer’s homomorphism (which, per the author’s knowledge, was hitherto unclear). We
will expand upon these considerations in [Chel|, where we also explore applications to computing the
group of torsion-free endotrivial modules of kG.

Finally, we note that all of the results above work in the Dirac spectral setting. We have chosen
this level of generality owing to recent work of Balmer-Gallauer [BG25] which shows that the Zariski
spectrum of the derived category of permutation modules of G over k is a Dirac spectral scheme for
G an elementary abelian group. We expound upon this example in Example 6.8.

1.D. Overview. Section 2 contains the necessary recollections on geometries following [DAGV],
in addition to results on the Zariski geometry of 2-rings following [HZG]. In Section 3 we collect
some preliminaries on relative spectra from [DAGV| which will enable their computation via descent.
Our key result here is Proposition 3.17, which demonstrates that the relative spectra of schemes are
0-localic. Our first main theorem, Theorem 4.7, is proved in Section 4. Section 5 is dedicated to the
proofs of Theorem B and Theorem D. Finally, Corollary C and Theorem E are recorded in Section 6.
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1.E. Conventions. We follow the notational conventions of [HZG]|. This color modifier is used to
mark instances of important definitions or notations for the reader’s convenience. When writing an
adjunction between oco-categories as

L:C2D:R,

it is always understood that L is left adjoint to R, in symbols L - R, unless otherwise specified.

1.F. Acknowledgements. We thank Martin Gallauer for helpful comments on the material of
Example 6.8. We are immensely grateful to Lucas Piessevaux and Juan Omar Goémez for careful
readings of our first draft. We thank David Gepner for constant encouragement and ever-present
interest in our projects. Finally, we thank Jennifer Cantrell for help with selecting the cover image.
Some of this material is based on work conducted while in residence at the Hausdorff Research
Institute for Mathematics during the Trimester Program: “Spectral Methods in Algebra, Geometry,
and Topology” from September—December 2022, funded by the Deutsche Forschungsgemeinschaft
under Germany’s Excellence Strategy — EXC-2047/1 — 390685813.

2. RECOLLECTIONS ON THE GEOMETRY OF RINGS AND 2-RINGS

2.A. Geometries. In this subsection we recall the classical Zariski and Dirac geometries on CAlg
as constructed in [DAGVII] and [HZG, §3|. We then go on to recall the construction of the absolute
spectrum and the relative spectrum associated to a morphism of geometries.

Definition 2.1. Let G be a small co-category, G4 a wide subcategory of G, and T a Grothendieck
topology on G. We say that (324, 1) is an admissibility structure on G or that (G, 324, 1) is a geometry
if the conditions below are satisfied.

(1) G has finite limits and is idempotent complete.

(2) 7 is generated by morphisms in G*¢.

(3) G2 is closed under base changes in G.

(4) If f is a retract of g in Gl satisfying g € G4, then f € G4 as well.

We refer to morphisms in G2d and covers in 7 as admissible morphisms and admissible covers,
respectively.

Definition 2.2. The classical Zariski geometry on (nonconnective) Eo ring spectra consists of the
following data:

(1) Gezar = CAlg®*°P| the opposite of the co-category of compact Eo, rings.

(2) Admissible morphisms correspond to localization maps R - R[x!] for x € 7R

(3) A finite collection {R — R[x;']};e; generates a covering sieve if the set {x;};es € moR generates
the unit ideal.

Remark 2.3. There is a variant of the above definition, 577 which is restriction of the admissibility
structure above to the co-category CAlg®™ of connective Eo, ring spectra. Note that the inclusion

CAlg™ < CAlg restricts to compact objects, and as such induces a morphism of geometries

cn

ar Gezar- We will not consider this variant here.

Definition 2.4. The Dirac geometry on Es-ring spectra consists of the following data:

(1) Ypir = CAlg®°P, the opposite of the co-category of compact Eo, rings.
(2) Admissible morphisms correspond to localization maps R — R[x~!] for homogenous elements
x em,R
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(3) A finite collection {R - R[x; }ier generates a covering sieve if the set {x;}ie; C 7. R generates
the unit ideal.

Recall that any geometry G has an associated oo-category of G-structured co-topoi.

Definition 2.5. Given a geometry G, we write LTop(9) to denote the oco-category of G-structured
oo-topoi. This is the oo-category consisting of pairs (X, 0) where X € LTop is an oco-topos and
O € Shv(X;Ind(G°P)) is an Ind(G°P)-valued sheaf satisfying a particular locality condition with
respect to the admissibility structure on §. A morphism (X, Ox) — (Y, Oy) is a pair

f*:X > YeLTopt!, ¢: f*Ox - Oy € Shv(Y; Ind(G°P)

where f* is used both to refer to left-exact left adjoint in LTop!!! and its induced pullback functor
on Ind(G°P)-valued sheaves, and ¢ is itself required to satisfy a particular locality condition with
respect to the admissibility structure on G.

We have opted to omit specifics in the above, and refer to [DAGV, §1.2| or [HZG, §3]| for a full
recollection of these definitions. Rather than do this ourselves, let us quickly recall the behaviour of
the oo-categories of structured topoi obtained from the geometries above.

Example 2.6. The oco-category LTop(Gezar) of consists of pairs (X, Oyx) where X € LTop and Oy €
Shv(X; CAlg) a sheaf of rings which is local in the following senses:
(1) The sheaf Oy is locally nontrivial, i.e., it is not identically the 0 ring.
(2) Let O} denote the sheaf of units of Oy, and let e : O} - Oy denote the canonical inclusion.
Then e [[(1 -e) : OF [1 O} — Oy is an effective epimorphism.
A morphism (X, Ox) — (Y, Oy) consists of a left-exact left adjoint f* : X — Y along with a morphism
f*O0x = Oy € Shv(Oy; CAlg) such that the following square is Cartesian:

F0y —— 0

L

ffOx — Oy.

Remark 2.7. Given a point x* : X — 8, it is easy to check that the stalk Oy , € CAlg is a local
E-7ing in the sense that it is a local ring on 7o, and that any morphism in LTop(G¢z.r) induces a
mp-local morphism of E., rings on stalks.

Ezxample 2.8. The oo-category LTop(Gpiy) consists of pairs (X, Ox) where X € LTop and Oy €
Shv(X; CAlg) a sheaf of rings satisfying the conditions of [DAGV, Definition 1.2.8] for the geometry
9pir- A morphism (X, Oyx) — (Y, Oy) consists of a left-exact left adjoint f* : X — Y along with a
morphism f*Ox — Oy € Shvcaleg(Oy) which is a local transformation of Gpj-structures in the sense
of loc. cit.

Remark 2.9. Given any point x* : X — 8§ the stalk Oy , € CAlg is a Dirac-local E-ring in the
sense that it is a Dirac-local ring on ., and any morphism in LTop(Y9p;;) induces a ., Dirac-local
morphism of E rings on stalks.

Recall that a transformation of geometries G — G’ is, informally, a left-exact functor which respects
admissible morphisms and admissible covers. The following functor is constructed in [DAGV, §2.1].

Definition 2.10. Given a transformation of geometries § — §', we write Specg, : LTop(9) —
LTop(g’) to denote the left adjoint to the natural forgetful functor LTop(G’) - LTop(G). We will
call this the relative spectrum functor.
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Given a geometry G, one always has access to GU¢ the discrete geometry on G, given by the

geometry with only equivalences as admissible covers. There is always a transformation of geometries

Gdisc . G which informally gives rise to a sequence of functors

LTop($) - LTop(§1%¢) ~% Ind(5°P).
The latter functor I'(-, ) : LTop(G4¢) - Ind(G°P) admits a left adjoint, sending R € Ind(S) to
the pair (8, R) € LTop(G45¢).
Definition 2.11. We write Spec” : Ind(§) — LTop(G) to denote the composite

o (S:R) disc Specgdisc
Ind(G°?) —— LTop(G“*°) ———— LTop(9)

which we refer to as the absolute spectrum functor.
The following follows from the existence of the adjoints above.

Theorem 2.12. One has an adjunction
Spec? : Ind(G°?) 2 LTop(9) : I'g
where I'q :=T'(-, 0). Namely, there is a natural equivalence
mapyopg) (Spec? (-), (X, Ox)) = mapg (-, (X, Ox))
of functors from Ind(G°P) to S.

Ezample 2.13. For R € CAlg, one has an identification Spece?ar ~ (Shv(Spec moR), Ospecr) of locally
spectrally ringed topoi. In particular, the identification I'(Spec moR, Ospec ) = R implies that the
absolute spectrum functor is fully faithful. This latter statement implies the subcanonicity of the
Zariski topology on CAlg.

2.B. 2-rings. Recall the tensor product on CatP® of [BFN10, §4.1.2], informally characterized by
the fully faithful inclusion Fun™(€; ® --- ® €,, - €') = Fun(Cy x --- x €,, €’) with essential image
given by functors which are exact in each variable.

Definition 2.14. We let 2CAlg denote the underlying co-category associated to CAlg(CatP®™). The
objects of 2CAlg are referred to as 2-rings.

Concretely, a 2-ring is a small symmetric monoidal idempotent-complete stable co-category
X = (X, ®,1) such that ® is exact in both variables, and a morphism between 2-rings K and £ is a
symmetric monoidal exact functor f:XK — £. The homotopy category of a 2-ring naturally has the
structure of a small idempotent-complete tt-category.

Definition 2.15. The full subcategory 2CAlg,;, €
X such that any object x € X admits a dual xV.

2CAlg of rigid 2-rings comprises of those 2-rings

Example 2.16. Given an E., ring spectrum R, the 2-ring of perfect complexes Perfg is a rigid 2-ring.
More generally, the subcategory 2CAlg,;, € 2CAlg is coreflective and hence closed under limits, see
[HZG, Proposition 2.37].

Definition 2.17. Given a 2-ring X, a thick tensor ideal or tt-ideal of X is a stable subcategory
J € K which is closed under retracts, and is moreover closed under tensoring with any object of XK.
Given a subset 6 ¢ K, we write (§) to denote the smallest thick tt-ideal containing §.
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Definition 2.18. Given a 2-ring K and a thick tensor-ideal J ¢ K, the Karoubi quotient of X is
the initial object of the full subcategory of 2CAlgy, consisting of the symmetric monoidal functors
which send every object of J to 0. We denote this object by X/J.

Remark 2.19. Karoubi quotients always exist for any tt-ideal, and are the idempotent-complete
incarnations of Verdier localizations. Outside of the monoidal setting, these are treated in [Cal+25,
Appendix A.3]. For a quick overview of the basic theory in 2CAlg, we refer the reader to [HZG, §2].

2.C. Prerequisite results on the Zariski geometry of 2-rings. We will need to utilise the
following facts, all of which are imported from [HZG, §3-4].

Definition 2.20 (|HZG, Theorem A]). The following data defines a geometry, known as the Zariski
geometry, on commutative 2-rings.
(1) Gzar :==2CAlg®°P is the opposite of the co-category of compact 2-rings.
(2) A morphism X — X’ in (Gza,)°P is called admissible if it corresponds to a Karoubi quotient
X - X/J.
(3) A finite collection of admissible morphisms {f;: K — X;};es is declared to generate a covering
sieve if for every x € (;¢; ker f;, there exists an n so that x®" = 0.

Example 2.21. The oo-category LTop(Gza.:) of consists of pairs (X, Ox) where X € LTop and Oy ¢
Shv(X;2CAlg) is a sheaf of 2-rings satisfying the conditions of [DAGYV, Definition 1.2.8] for the
geometry Gzar. A morphism (X, Ox) = (Y, Oy) is as above.

Remark 2.22. Given any point x : X — § the stalk Oy , € 2CAlg is a local 2-ring in the sense
that if x ® y € Ox x is tensor-nilpotent, then either x or y is tensor-nilpotent. Any morphism
(X, Oy) = (Y, Oy) in LTop(Gzar) induces nil-conservative morphisms on stalks, namely morphisms
with kernels consisting of tensor-nilpotent elements.

As suggested by the terminology, one may compare the classical Zariski geometry of Eo ring
spectra and the Zariski geometry of 2-rings.

Proposition 2.23 (|[HZG, Proposition 4.33|). The assignment A — Perfs yields morphisms of
geometm'es 9cZar g 9Zar and 9Dir - 9Zar-

From the proposition above, one obtains a series of morphisms Gczar € Spir = Gzar. The associated
restriction functors from LTop(Gzar) to LTop(SGezar) (or LTop(SGpir)) can be identified through the
helpful proposition below.

Definition 2.24. We write R(_) to indicate the functor sending X € 2CAlg to the endomorphism
ring spectrum homg(1,1) € CAlg. This functor participates in an adjunction of the form

Perf : CAlg 2 2CAlg : R
where the left adjoint is fully faithful, see for example [HZG, Construction 4.29].

Proposition 2.25 ([HZG, Lemma 3.22]). Given a Gzar-structured oo-topos (X, O) € LTop(Szar), its
associated restriction to LTop(Gezar) (or LTop(Spir)) may be identified with the pair (X, Rg) where

R is the composite
Rzy 00 : XP - CAlg

In [HZG] it is shown that the Zariski geometry of a 2-ring is captured by its Balmer spectrum. We
recall this notion and the essential features required below. For a more detailed recollection, we refer
either to [HZG, Section 4.1| or to Balmer’s original paper [Bal05].
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Recollection 2.26. Let K be a 2-ring. The Balmer spectrum of X is the topological space Spc X
whose underlying set is given by

{P|PcXis a prime tt-ideal}

Where by prime tt-ideal we mean that P is a tt-ideal and Vx,y e K, x® ye P = xePoryeP.
The topology of SpcX is generated by a basis of open subsets U(a) := {P € SpcXK | a € P}. It can
be shown that the basic open subsets are exactly the quasicompact open subsets, and with this
topology the Balmer spectrum is a quasicompact, quasiseparated spectral space.

The following theorem is a combination of [HZG, Theorem C, Theorem D|.

Theorem 2.27. Let X € 2CAlg.

(1) There is a natural identification of underlying topoi SpeciZer K ~ Shv(SpcK), where the
SpcX refers to the Balmer spectrum of the tt-category ho XK.

(2) If X is moreover assumed to be rigid, then the associated structure sheaf on Spec X may be
identified with the unique 2CAlg-valued sheaf on Spc X which sends quasicompact opens of
the form U(a) € SpcK, a € K to the Karoubi quotients X/{a).

Note that the global sections of the structure sheaf on Spec X are identified with sections on the
open subset U(0) € Spc XK. From this, we immediately obtain the following.

Corollary 2.28. Let X € 2CAlg,;, a rigid 2-ring. Then the counil of the adjunction Spec + T yields
an equivalence X ~ T'(Spec X, Ospecx). In particular, the functor Spec : 2CAlg,;, — LTop(Szar) is
fully faithful.

Notation 2.29. We will henceforth write Spec K := Specizar K for K € 2CAlg, and will refer to the
underlying space by |Spec XK|. Its associated structure sheaf will be denoted Ox.
3. PRELIMINARIES ON RELATIVE SPECTRA AND DESCENT

In this section we collect certain results of [DAGV]| which will allow us to compute relative spectra
by descent. We use this to write down the key observation that the relative spectra of 0-localic
oco-topos arising from spectral schemes (Definition 3.15) are themselves 0-localic.

3.A. Etale maps. Recall the following definition of [HTT, §6.3.5].
Definition 3.1. A map fx : X - Y € LTop!! is said to be étale if it admits a factorization
x5 Xy =Y
where 7* is right adjoint to the projection m : X,y — X for some U € X.
Note that under these conditions, 7* is itself in LTop!'.

Definition 3.2. Let G be a geometry. A morphism f : (X, Ox) = (¥, Oy) ¢ LTop(S)'! is said to be
¢tale if the following conditions are satisfied:

(1) The underlying geometric morphism f*: X — Y is étale.
(2) The induced morphism f*Oy — Oy is an equivalence in Shv(Y;Ind(G°P)).

Notation 3.3. We write LTopg, ¢ LTop and LTop(9)¢ c LTop(G) to indicate the wide subcategories
spanned by the étale morphisms. Note that the induced forgetful functor LTop(G)g — LTopyg; is a
left fibration.
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The following facts are recorded in [DAGV, Proposition 2.3.5, Proposition 2.3.18].

Proposition 3.4. Let G be a geometry.

(1) LTop(G)¢t admits small limits which are preserved by the inclusion LTop(G)e — LTop(9).
Furthermore, an augmented simplicial diagram with values in LTop(9)e is a limit diagram if
and only if the diagram of underlying topoi in LTopy® is a limit diagram.

(2) For every X € LTop(G), one has equivalences X°P ~ (LTop(9)st),(xr,01) via U = (X;y, Oly).

(8) Given a morphism of geometries f :' G — G' and an étale morphism

(X, 0x) = (X, Oxluy) € LTop(9)L]

[S)

the associated map Specg/(fx, 0) - Specg’(x/y, Ox|v) € LTop(§) 1 is also étale, and more-
over sits in the following co-Cartesian diagram

(X, Ox) ——— (Xyu, Oxlv)

| l

Specy (X, 0) — Specy (X, Oxlv)

in LTop, where the vertical morphisms are associated to the unit transformations of the
adjunction Specg - res.

For the following lemma, fix a morphism of geometries f: G — §’, and let (X, Q) € LTop(9) be a
fixed base.

Lemma 3.5. The relative spectrum functor Specg’ sends limits in LTop(9)e to limits in LTop(9').

Proof. We first demonstrate the simpler statement that the relative spectrum sends limits in
(LTop(S)et) (x,0); to limits in LTop(9’), given (X, 0) e LTop(G). Write (X', 0’) = Specg’(fx, 0) €
LTop(S’) and let n* : X - X’ € LTop!* denote the induced counit map. Proposition 3.4 implies that
the relative spectrum construction lifts to a functor (LTop(9)et)(x,0); = (LTop(S )st)(x’,07)/, and
the same proposition implies limits in this latter co-category may be computed in LTop(S’). It thus
suffices to show that this lift preserves limits. Applying the equivalences of Proposition 3.4.(2) to
(X, 0) and (X', Q') yields a composite of the following form

xL)(LTOp(g)et)7?x’o) g (LTOp(gl)ét);)Fxl’o/) e x,

which may be identified with n* : X - X’; as this functor is continuous, the claim follows. Now,
given a diagram p : K — LTop(G)¢ admitting a limit p< : K< — LTop(9)¢, one has unique lifts
of p, p? to diagrams ¢q : K — (LTop(9)ét) pa ({00}, and similarly for g<. Since the forgetful functor
(LTop(9)ét) p< ({00)}; > LTop(G)et creates limits, the diagram g must itself be a limit diagram for
q. We learn that the composite

g% : K — (LTop(9)st) p ({oo)}; = LTop(S")

is a limit diagram over the restriction to K. Since this is naturally identified with Specg/ op<, the
result follows. O

We conclude with the following definition.

Sor equivalently LTop
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Definition 3.6. Given a geometry G, let (LTop(9)°P, can) denote the (locally large, very large) site
where can is the Grothendieck topology consisting of exactly those sieves C/(x 0y ¢ (LTop(9)°P),(x,0)
containing a family of maps f; : (X;, O;) — (X, Q) satisfying:
(1) Each f; is étale.
(2) Under the equivalence (LTop(S)gf)/(x,o) ~ X of Proposition 3.4.(2), f; corresponds to a
family {f; : U; — 1} with [[; U; - 1 an effective epimorphism.

Example 3.7. The Yoneda embedding X : LTop(G)°P — Fun(LTop(S),g) has essential image con-
tained in Shvca, (LTop(9)°P; S).

Ezample 3.8. Given a morphism of geometries f : § — G’ the assignment
{(X,0) = g (Specy (X, 0)} € Fun(LTop(5). Ind(§"7))

is a sheaf on (LTop(9),can). Indeed, let C/x p) be an arbitrary covering sieve. By definition,
C/x,0y = X1 is associated to a covering sieve of 1 € X in the canonical topology, and thus
(X, Ox) ~ liine (U, 0Oly) in (LTop(9)¢t)(x,0)/- It follows that the natural map

/(.0)

Fg/(Spec] (X, 02)) ~>lim, Ty (Specg (U. Oly))

is an equivalence by the proof of Lemma 3.5 and the fact that I'¢s is a right adjoint, yielding the
claim.

3.B. Localic structured topoi.

Definition 3.9. Let X € RTop. We say X is 0-localic if for any Y € RTop one has an equivalence
Fun®®°™ (Y, X) ~ Fun®®™(1<_1Y, 7<_1X)

where 7<_1: RTop — Cat sends any co-topos to the full subcategory of its (—1)-truncated objects.

Recall that a frame is a partially ordered set admitting arbitrary colimits and finite limits, such
that finite limits distribute over infinite colimits. We write Loc to denote the category of frames
with morphisms given by right adjoints which admit left-exact left adjoints. Given a frame F, we
furthermore write Shv(F) := Fun™ (F°P, 8). The following result is an agglomeration of the results
of [HTT, 6.4.2.1, 6.4.5].

Theorem 3.10 (Omnibus 0-localic topoi). The functor Shv(-) : Loc - RTop is fully faithful with
essential image exactly the 0-localic topoi. It furthermore admits a left adjoint, given by X — 1<_1X,
whose unit transformation s referred to as the 0-localic reflection.

Notation 3.11. We choose to work in the following settings, mirroring algebro-geometric convention.

(1) Let RToplé’zlo‘ := LTop(G¢zar)°P. We refer to this as the co-category of locally spectrally ringed
topos. )

(2) Let RTopBXlg := LTop(Spir)°P. We refer to this as the co-category of Dirac-locally spectrally
ringed topoi.

(3) Let R,Topg)(‘;Alg = LTop(Gzar)°P. We refer to this as the oo-category of locally 2-ringed topoi.

In each of the cases above, morphisms (X, Oyx) = (Y, Oy) are geometric morphisms f. : X — Y along
with morphisms Oy — f.Ox satisfying a locality condition on their mates.
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loc

Ezample 3.12. There is a full subcategory Top g = LTop(Gczar)°P corresponding exactly to the
locally spectrally-ringed spaces with hypercomplete sheaves of commutative rings. These have a more
familiar definition purely in terms of the pointwise condition of Remark 2.7. We refer the reader to
[DAGVII, §2] for details.

Notation 3.13. We will henceforth write Locacale == RTopyc Alg XRTop Loc, and analogously with

loc
LOCQCAlg'

Example 3.14. Given X € 2CAlg, Theorem 2.27 implies that the underlying co-topos of Spec X is

0-localic and hence SpecX € L0(312°CC Alg-

3.C. Relative spectra of spectral schemes are 0-localic. We recall one equivalent definition of
the co-category of spectral schemes, following [DAGVII, Definition 2.7].

loc

Definition 3.15. A spectral scheme®, (vesp. Dirac spectral scheme) is an object X € RTop(y ), (resp.
RTopgxl g satisfying the following two conditions.
(1) The underlying oo-topos (which we will denote Shv (X)) is 0-localic.

(2) There is an effective epimorphism {]] U; - 1} in Shv(X) such that for every i there exists
R € CAlg and an equivalence (Shv(X),y,, Ox|y,) = Spec R in LTop(Gczar) (resp. LTop(Spir)).

We write SpSch c RToplgzl o (resp. SpSchDir) to denote the full subcategory of spectral schemes.

Definition 3.16. We say a spectral scheme is quasicompact and quasiseparated (qcgs) if the underlying
0-localic oo-topos Shv(X) is coherent in the sense of [DAGVII, §3].

The following result is the main import of this subsection.

Proposition 3.17. Let § = Gezar (resp. Gpir), let G’ = Ggar. Let X € SpSch, SpSchP™. Then

loc

Specg’ X € Locyiay,-
We will need the following establishing lemmas.

Lemma 3.18. Any left exact functor F : C - D between oo-categories admitting finite products’
sends (=1)-truncated objects of C to (=1)-truncated objects of D.

Proof. This boils down to the claim that an object ¢ € € is (—1)-truncated if and only if the diagonal
map A: ¢ — ¢ x ¢ is an equivalence, the verification of which we leave to the reader. O

Lemma 3.19. Let f. : X - Y € RTopl!! be a geometric morphism satisfying the following conditions:
(1) Y is O-localic.
(2) There is an effective epimorphism 11, U; - 1 € YU such that U; € t<_1Y and X, ey, is
0-localic, for everyicel.

Then X is 0-localic.

Proof. Passing to associated left adjoints supplies a factorization of f* : Y — X through a left-exact
left adjoint Y — Shv(1<-1X) using Theorem 3.10. Using Lemma 3.18 we may now reduce to the
case where Y ~ Shv(1<_1X) and f, is the reflection 7, : X - Shv(7<_1X). In this case, we are given

6these are potentially nonconnective by default.
"This condition is easily dropped by passing to presheaf categories.
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{U;}ier € T<-1Shv(1<-1X) ~ 71X along with an effective epimorphism [[; U; » 1 in X. Define the
morphisms f! € RTop!!! as in the following Cartesian square
(3.20) Xy, ——— X
i |
Shv (1<-1X),y;, — Shv(7<_1X)

noting that the object f“*U; € Shv(r_;X) may be identified with U;.
We first claim that the left adjoint to the top horizontal map in (3.20), given by

Ui x=:X = Xy,

induces an equivalence (1_1X),y, = 7-1(X,y,). Since U; is (=1)-truncated, we have that x xy, y ~ x xy
for any pair of maps x - U;, y = U; in X', owing to the following Cartesian diagram

XXy, X ——— X XX

|

U,'—Ui ><Ui.

We find that every x — U; € X1 satisfies x ~ x xy, Ui ~ x x U;, and that any x - U; is (-1)-truncated
if and only if x € 7_1X from which the claim follows.

The previous claim furnishes an equivalence Shv(r<_1(X,y;)) — Shv(r<_1X),y, which moreover
identifies f! with the O-localic reflection X ju; = Shv(t<-1(X;y,)) (by checking that this induces
the identity upon application of 7_1). By assumption on U;, we have that f! is an equivalence for
every i € I, whence we have that n, : X - Shv(7.-1X) is an equivalence upon pulling back along
Shv(t<-1X) 11, v; = Shv(7<1X). Applying descent [HTT, Theorem 6.1.3.9], we conclude. m|

Before we begin the proof of Proposition 3.17, we will also require the following key fact.

Recollection 3.21. Given a transformation of geometries § - §', [IDAGV, Proposition 2.3.18.(2)]
supplies an identification Specg, Spec? Specgl of functors Ind(G°P) — LTop(g’).

Proof of Proposition 3.17. By construction, we are supplied with a counit map f; : Specg’ X —>Xin

RTopl(‘j’/il ¢~ [DAGVIL, Theorem 2.40] implies that we may find an effective epimorphism [I;e; Ui » X
where U; € 7<_1Shv(X) and (Shv(X),y,, Oxlu,) ~ Spec A; for A; € CAlg; indeed, we may select any
cover of the underlying classical scheme by affine opens. Proposition 3.4.(3) now implies that

(Specgl X)) fru; Specg’ Spec A; ~ Spec Perfy,

the last of which is O-localic by Example 3.14. We are now in the setting of Lemma 3.19, and we
may conclude. O

4. AN AFFINENESS CRITERION FOR 2-SCHEMES

This section is dedicated to the proof of Theorem A, recorded as Theorem 4.7 below. Let us first
define our basic objects.

Definition 4.1. An affine 2-scheme is an object (X, Ox) € RTOpIQOéAlg which is equivalent to Spec K

for some K € 2CAlg. We write 2Aff RTopIQOCC Alg 1O denote the full subcategory of affine 2-schemes.

Definition 4.2. A 2-scheme is an object (X, Ox) € RTopIQOé’ Alg satisfying the following conditions:
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(1) The underlying oo-topos X is 0-localic.
(2) There is an effective epimorphism {[] U; - 1} in X such that:
(a) Each U; € 71X
(b) For every i there exists X; € 2CAlg and an equivalence (X,y,,Ox|y;) ~ SpecX; in
LTop(Szar)-

We write 2Sch c RTopIQO(‘S Alg 1O denote the full subcategory of 2-schemes.

The truncatedness restriction on U; in part (a) of condition (2) above is meant to ensure that the
covering 2-affine neighborhoods of X are actually associated to subframes of 7<_1X. This at first
appears to distinguish it from Definition 3.15. However, condition (2) turns out to be redundant,
and we refer the reader to Remark 4.14 at the end of this section for further discussion of the same.

Definition 4.3. We say a 2-scheme is quasicompact and quasiseparated (qcgs) if the underlying
0-localic co-topos X is coherent in the sense of [DAGVII, §3].

Ezample 4.4. By the identification of Theorem 2.27 and the results of [Bal05, §2|, one has that
Spec X € 2Schgeqs for every K € 2CAlg, and hence 2Aff ¢ 2Schcgs.

Definition 4.5. We say a 2-scheme (X, Oy) is rigid if there exists an effective epimorphism
{L1U; —» 1} in X such that for every i:

(1) Ui € Ts_lx

(2) There exists X; € 2CAlg,;, and an equivalence (X,y,, Ox|u;) = SpecX; in LTop(Gzar)-

Remark 4.6. As one might hope, it is possible to show that the result of Theorem 4.7 implies that
(X, Ox) is a rigid 2-scheme if and only if any étale map

Spec X — (X, Ox) € (RTOPlcOZlg)[l]

associated to U € 7<_1X factors through a map f : Spec X - Spec X’ where X' is rigid and f is an
equivalence of locally 2-ringed topoi. Thus, the property of an affine neighborhood to be equivalent
to the spectrum of a rigid 2-ring satisfies the “affine commmunication lemma”.

The main result of this section is the following.
Theorem 4.7. A rigid 2-scheme (X, Ox) is affine if and only if it is qcgs.

The “only if” direction is just Example 4.4. For the reverse direction, we will need to collect some
preliminaries on the behaviour of Karoubi quotients in CatP®f. We are primarily after Corollary 4.11,
which is essentially a symmetric monoidal version and idempotent-complete of [Cal+25, Proposition
A.1.18]. In the interest of self-containment we have chosen to include a direct proof that does not
assume their result. We will first need the following useful lemma, a weak version of the “second
isomorphism theorem” for stable co-categories.

Lemma 4.8. Let & € C ¢ D be a sequence of inclusions in CatP™t. Then the induced functor
C/E — D/E is fully faithful.

Proof. Given x1,xg € C, [NS18, Theorem 1.3.3] implies that the map mapeg(e(x1),e(x2)) —
mapq g (f(x1), f(x2)) may be identified with the natural map

1(i£1 mape(x1, cofib(Z — x3)) — lin mape(x1, cofib(Z — x2))
Zelexa Ze€lpxo
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where e : C - C/€ and f: D — D/E are the associated Karoubi quotients. However, since € € € € D
are inclusions of full subcategories, the induced functor € |e xo9 = € |p x9 is an equivalence, and for
every Z € € |p xo the following map is an equivalence

mape(x1, cofib(Z — x3)) = mapq (x1, cofib(Z — x2)).
The claim follows. O

Recollection 4.9. We recall the “oriented fiber product” construction of [LT19]. Given a diagram
ALedBin CatPf | the oriented fiber product A Xe B is defined by the following pullback
diagram

AxeB —— cl

AxB 9 exe

where s, send a morphism in G to its source and target respectively. Note that there is a fully
faithful inclusion A xe¢ B « A Xe B, with essential image exactly those triples (x,y,a : p(x) = q(y))
such that @ is an equivalence in ©, using the identification € =~ G114 where the latter refers to the
full subcategory on the equivalences, and the fact that the following is a pullback diagram

A xgB —— €= Cllea

|

AXeB — el

For the next lemma, let X LR K1 L Ko be a diagram in 2CAlg such that ¢ is identified with a
Karoubi quotient of Ko away from Jo c Ks.

Lemma 4.10. The induced functor K §g<12 Ko - K1 §g<12 K12 given by

(,y,a:p(x) = q(y) = (x,q(y),a: p(x) > q(y))
is a Karoubi quotient with kernel given by the thick subcategory (0,Js,0).
Proof. Let us write € := Kj x5, Ko, € := K; X, K12, and D := (0, J2,0). The identification of the
kernel of the map € — €’ as in the lemma is clear, and one thus has a conservative functor €/D — €’

which we first claim is fully faithful. By [NS18, Theorem 1.3.3], it is equivalent to show that given
(x1,y1, @), (x2,y2, B) € € arbitrary, the natural map

lim  mape ((XL y1, @), cofib(Z — (x, y2,,3))) - mape: ((x1,4(y1), @), (x2,¢(y2), B))
Z€D(x3.v2.5)
is an equivalence. Using the pullback presentation of €', the latter mapping space may be expressed
via the following Cartesian square

mape ((x1,¢(y1), @), (x2,4(y2), B)) mapy1 (e, f)

| l

mapg, (X1, X2) x mapg,,(q(y1), ¢(y2)) — mapg,, (p(x1), p(x2)) x mapg,,(q(y1), q(y2))

where we note that the following natural map is an equivalence

mapy, (x1,X2) ¥ lim mapqg,, (y1, cofib(Z — y2)) - mapy, (x1,x2) x mapy,,(¢(y1),¢(y2))
ZEJQ/yQ
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since Ko - K12 identifies the target with the Karoubi quotient away from J5. Using the fact that the
target map t : € - Ky is a colocalization with left adjoint given by y ~ (0, y,0), we have that the
target map induces an equivalence D/ (x, y, g) = J2/y,. Altogether, we obtain a Cartesian diagram

lim mape ((xhyba),coﬁb(z - (xz,yz,ﬁ))) —— maper((x1, ¢(y1), @), (x2,q(y2), B))

—Z€D(xy.y9.8) l

mapsg, (x1,x2) x h_H}ZEJQ/yQ mapg,, (y1, cofib(Z — y2)) —— mapy, (x1,x2) x mapg,, (g(y1), q(y2))

by taking a filtered colimit of the associated Cartesian squares over Z € Jp;y, ~ Dy, y, g)- Since the
bottom horizontal arrow is an equivalence, we deduce the claimed fully faithfulness.

It remains to see that the map € — €’ has a retract-dense essential image, or equivalently
that €/D — €' is surjective. For this, we note that given any arbitrary (x,y,a) € €', the object
(x®Zx,y® Xy, a ® Za) sits in the following cofiber sequence:

0, y®Zy,0) > x0Zx,y®Zy,a ®Za) > (x ® Zx,0,0)

where the third term lives in the essential image of the embedding X; — €', and the first term
lives in the essential image of the composite Ko - Ko/Jy ~ K19 — €', using the K-theory extension
theorem of Neeman-Thomason [Nee92, Corollary 0.9]. Since both of these embeddings factor through
the map € — €, it follows that the middle term of the above sequence is in the full subcategory
C/D c €. It follows that (x,y, @) is the retract of an object in €/D, yielding the claim. O

Corollary 4.11. Notation as in the previous lemma, one has that the natural map Ky x5, Ko = Ky
is a Karoubi quotient away from the ideal (0,J2,0). Moreover, the following diagram is co-Cartesian
in 2CAlg:

le XK1 5{2 Em— le

|

g{g _— Klg

Proof. 1t is clear that the following composite
K1 xacp, Ko = Ky X, Ko = Ky X, Ko

has essential image contained in the full subcategory of triples (x, y, @) such that a € 5{512]’601 which
by Recollection 4.9 corresponds exactly to the image of Ky x5, Ki2 ¢ K ;g{m K12. Applying
Lemma 4.10 and Lemma 4.8, one obtains a fully faithful inclusion (X x4, X2)/(0,J2,0) = K1, and
it remains to show that this is essentially surjective. This uses the same argument as in the last
paragraph of Lemma 4.10.

The fact that the square is co-Cartesian follows from [HZG, Corollary 2.30], which states that the
following square is co-Cartesian in 2CAlg:

:Kl XK1 j{g _— JC1
KQ — ? X?/(Oa 92’0)

where we have also written (0, Js,0) to refer to its image in K. However, this is exactly Jo € Ko,
which identifies the bottom horizontal arrow above with the localization map K9 - XKyo. O
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Proof of Theorem 4.7. We will induct on the number of affines required to cover a rigid qcqs 2-
scheme. The case n = 1 is trivial. For the inductive case, let (X, Ox) admit a cover by affine
2-subschemes Uy, ..., Uy, where each U; ~ SpecX; for X; € 2CAlg,;,. Let U = |(L[;‘:_11 Up))*®| € X,
and consider the scheme (X, Ox|y)®. By the inductive hypothesis, (X, Oxlu) ~ Spec £ where
L :=0(U) € 2CAlg,;,. By the assumptions of coherence of (X, Ox) and Theorem 2.27, one has that
the object U x U, € 17<_1Xy, =~ 1<-1 Spec X, corresponds to a quasicompact open of the Balmer
spectrum. By the same theorem and rigidity, the map (X,yxv,, Oxluxvu,) = (X,u,, Ox|u,) may be
canonically identified with the map Spec X, /(a) - Spec K, associated to the Karoubi quotient of
X, by some a € X,,. Similarly, one may identify the map (X,y v, Oxluxv,) = (X,u, Oxly) with the
localization map associated to some b € £. Using that U [[y.y, Un = 1 € X and Proposition 3.4, we

have the following co-Cartesian square in RTopIQOCC Alg’

(4.12) Spec L/{b) ~ Spec K,,/{a) —— Spec K,

l l

Spec L ——— (X, Ox)

where all morphisms are étale. Passing to global sections and applying Corollary 4.11, one obtains
the following Cartesian diagram

(4.13) Spec K, /{a) ~ Spec L/{b) —— Spec XK,

l |

Spec L ———— SpecI'(X, Oy)

where the vertical and horizontal morphisms are each associated to Karoubi quotients of Spec I'(X, Ox),
thus every morphism is étale.

Under the equivalence of categories (RTopéoéAlg’ét)/speCr(x,ox) ~ Spec I'(X, Ox) of Proposition 3.4.(2),
the étale map Spec £ x Spec X,, = SpecI'(X, Ox) corresponds to an effective epimorphism U]V —» 1
and hence an identification 1 =~ U [[y.y V. Unwinding the equivalences and applying Proposi-
tion 3.4.(1), we find that the Cartesian diagram of (4.13) is in fact co-Cartesian as well. There is an
“affinization map” from the square of (4.12) to that of (4.13) induced by the unit of the adjunction
I' - Spec. As this is the identity on every vertex except the bottom right, we find that the affinization
map (X, Oyx) — SpecI'(X, Oy) is an equivalence, yielding the inductive case and hence the claim. O

As promised, we elaborate on the apparent difference between Definition 3.15 and Definition 4.2
before concluding.

Remark 4.14. In Definition 4.2 the restriction to truncated objects in part (a) of condition (2) is
actually unnecessary, as we now explain.

First we claim that even with just condition (1) and part (b) of condition (2), the underlying
frame 7<_1X can be shown to be spatial, i.e., it is the frame of open subsets of a topological space.
Write Frm ~ Loc®P. Using part (b) of condition (2), the assumption that {[] U; - 1} is an effective
epimorphism, we obtain the following equalizer diagram in Frm:

X = [ [rea (o) 3 | [ a1 (Xw,)-

8spatiaully, this corresponds to the union of the open subschemes Uy, ..., Up—1.
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Recall that 7<_1 Xy, is associated to the frame of opens of the topological space [Spec X;| ~ SpcX;
by Theorem 2.27. The claim now follows from the fact that Stone Duality implies spatial frames are
closed under limits (|Joh86, §I1.3|, see also [HZG, Recollection 4.8]).

Keeping the conditions as above, recall that the maps SpecX; — X ¢ RTop!!! are étale maps
of oco-topoi. In fact, by [DAGV, Lemma 2.3.16| the objects U; are in 1<oX since X is 0-localic and
Xu; ~ Spec X; is 0-localic. Restricting to underlying ordinary topoi yields a map

Shv(|Spec K;|; Sets) ~ Shv(|r<-1X|; Sets) i, = Shv(|r<_1X][; Sets)

from which it follows that underlying morphism of spaces ¢ : |Spec K;| = |7<-1X]| is a local homeo-
morphism, associated to the espace étalé of the sheaf of sets U; on |[r<_1X]|.

Given any point x € |7<_1X| in the image of ¢, x is contained in an open neighborhood U which
is homeomorphic via the map above to an open neighborhood U(a) ¢ |Spec X;|, as these form a
basis for the Balmer spectrum. Moreover, since this is an étale map of locally 2-ringed topoi, we may
deduce that ¢ induces equivalences

(Xyu, Oly) = (Shv(U), Oly) = U(a) ~ Spec X;/{a)

of locally 2-ringed topoi, where by construction U € 7._1X. Selecting such neighborhoods around
every point x € |t<_1X]| gives rise to a collection of objects in 7._1X satisfying the desired parts (a)
and (b) of condition (2) in Definition 4.2.

5. AFFINENESS AND RECONSTRUCTION OF SCHEMES

5.A. Relative affineness of schemes. In this section we demonstrate that the relative spectra of
qecgs (Dirac) spectral schemes are affine 2-schemes. To identify their global sections, we will need to
introduce the 2-ring of perfect complexes on a spectral or Dirac spectral scheme.

Definition 5.1. As per our convention, we write m to denote CAlg(@cperf), the very large
co-category of large 2-rings. Passing to a larger universe, [SAG, Construction 6.2.1.7| constructs
an extension of the functor Perf : CAlg — 2CAlg ¢ m to a limit-preserving to a functor
Perf : Fun(CAlg, g)OP - QEA\lg

Lemma 5.2. Consider the functor-of-points map

~  —oS —~
SpSch € RToplss,, —> Fun(RTopl5”. 8) — Fun(CAlg, ).

The functor Perf of Definition 5.1 takes values in 2CAlg,;, € 2CAlg when evaluated against any object
in the essential tmage of SpSch. The same holds if SpSch and l:{Toplc‘J)/CUg are replaced by SpSchP
and RTop}gicr.

Proof. [DAGV, Theorem 2.4.1] implies that the essential image of the functor-of-points factors
through Fun(CAlg, 8) € Fun(CAlg, g) In particular, any object X € SpSch has essential image given
by a small colimit of the form in Fun(CAlg, g) In particular, as Perf is limit-preserving, the value
of Perf on X may be presented as a small limit in 2CAlg of objects of the form Perfg for R € CAlg.
As these latter objects are small and rigid, and the inclusion 2CAlg,;, € m is closed under small
limits, the result follows. The same argument holds in the Dirac case. O

Henceforth, the assignment Perf constructed above from SpSch (resp. SpSchP™) to the co-category
2CAlg,, is referred to as the functor of perfect complezes. With this definition in tow, we are ready
to prove the main result of this section, Theorem B.
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Theorem 5.3. Let § = Gezar (resp. pir) and let §' = Gzar. Then for any X € SpSchy.s (resp.

SpSChgéfls) one has a natural identification

Specg X ~ Spec Perfyx
Proof. Proposition 3.17 and Proposition 3.4.(2) imply that Specg, X is a qcgs 2-scheme. Consider any
collection of objects U; € 7<_1Shv(X) which jointly cover 1 € Shv(X) and satisfy (Shv(X),U;, Ox|y,) =~
Spec R;. Proposition 3.4.(3) sends this to an étale cover of Specgl X by objects of the form Spec Perfg,,

each of which is associated to a (—1)-truncated object of the underlying co-topos of Specgl X. As
these are rigid by Example 2.16, the relative spectrum is a rigid qcgs 2-scheme. By Theorem 4.7,
it follows that the relative spectrum is affine, and the result will follow if we can supply natural
identification

I'(Spec] X, 0) = Perfy,

which is done below in Proposition 5.8. O

We demonstrate the missing proposition (Proposition 5.8) required to complete the proof of
Theorem 4.7.

Construction 5.4. Consider the following diagram of left adjoints:

(5.5) CAlg —° _, ITop(S)

a o
Perf 7 Spec9

2CAlg ————— LTop()
pec

where @ € Fun(CAlg, LTop(G"))!! is the natural equivalence of Recollection 3.21; note that we have
dropped the superscripts from the horizontal functors and leave the geometries implicit. Using the
adjunction of Theorem 2.12 and passing to horizontal mates, we obtain a comparison morphism:

(5.6) a" : Perfr(_ o) = F(Specg/(—), 0) € Fun(LTop(G), 2CAlg)!!

Definition 5.7. We refer to the admissible topologies on CAlg®® under the identifications CAlg® ~
Pro(Gezar), CAlg®® ~ Pro(Gpiy) as the Zariski and Dirac topologies respectively. Here the notion
of admissible is as in [DAGV, Notation 2.2.2]: For a given geometry G, recall that an admissible
morphism f: U — X for U, X € Pro(9) is one for which there exists a pullback diagram as follows

ULU’

| b

X— X
where U’, X’ € § and f’ is an admissible morphism for G.

The next proposition will explicitly identify o” and its target using Zariski (resp. Dirac) descent,
thereby concluding this subsection.
Proposition 5.8. The inclusion
Shvean (SpSch; 2CAlg) ¢ Fun(SpSch®?, 2CAlg)

admits a left adjoint localization. We refer to both this localization and its unit transformation as

sheafification with respect to the canonical topology. Keeping the notation of Construction 5.4, we
have:
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(1) The map a™ € Fun(SpSch®P, 2CAlg) ! is identified with the sheafification of the source with
respect to the canonical topology.

(2) The sheafification of Perfr(_ o) with respect to the canonical topology on SpSch is given by
the assignment X — Perfy.

The same results hold if SpSch is replaced by SpSchP™.

Proof. Our first task is to construct the desired left adjoint localization. For our purposes, we will
need to derive an explicit formula in terms of Zariski sheaves on CAlg®P. Let Shvy,.(CAlg®°®) denote
the co-category of Zariski sheaves on CAlg®? valued in 8. Recall that the inclusion

Shvza: (CAlg®P) € Fun(CAlg, S)

admits a left-exact left adjoint localization by applying [HTT, Lemma 6.2.2.7] in a larger universe.
The functor of points embedding [DAGV, Theorem 2.4.1] states that the following composite is fully
faithful

SpSch <> Fun(SpSch, §) —2% Fun(CAlg, 8) — Shvga, (CAlg®?)

and furthermore sends colimits in SpSchg, € LTop(Sezar)¢s to colimits in Shvz,,(CAlg). Thus,
for any very large oo-category C admitting all large colimits, the induced right adjoint functor
Shvza, (CAlg®P; €) - Fun(SpSch, €) lifts to Shvean (SpSch; €) using the same argument as in Exam-
ple 3.8. This gives rise to the following adjunction

t* : Shvean (SpSch; €) 2 Shvz,, (CAlg®P; C) :

here, (* is given by restricting a sheaf along the map of sites Spec : (CAlg®P, Zar) — (SpSch, can).
To describe ¢, note that there is an equivalence

Shvzar (CAlg®P; @) ~ Fun®™(Shvz,, (CAlg®)P, @)

which is inverse to the restriction from the right hand side to the left hand side, see [SAG, Proposition
1.3.1.7]. Under this equivalence, ¢, sends a sheaf F € Shvz,, (CAlg®?; €) to the composite

SpSch® % Shvean (SpSch)®® — Shvya, (CAlg®?)P & 6.
Now recall that by the subcanonicality of the Zariski topology, the functor
Spec : CAlg®? — SpSch — Fun(CAlg, §)°p

may be identified with the Yoneda embedding. From this, it is easy to directly compute that the

*

counit ¢*t, —>id as endofunctors of S,h;Zar(CAlgOp). Additionally, ¢* is conservative, owing to the

following two facts:

e Every quasi-affine spectral scheme X admits a canonical cover by affines {[] Spec R; - X}
with all terms in the associated Cech complex affine.

e Every object X € SpSch admits a canonical cover by affines with all terms in the associated
Cech complex quasi-affine.

It follows that the restriction ¢* is conservative, as any morphism % — € € Shvean (SpSch)! inverted
by ¢* is by definition an equivalence when evaluated on any affine, hence on any quasi-affine,
and therefore on arbitrary spectral schemes. We deduce that the pair * < ¢, supply mutually
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inverse equivalences. Let us now demonstrate claim (1). Note first that there is an equivalence
2CAlg ~ Fun'®™(2CAlg®°P, 8). This induces a composite equivalence

Shvzar (CAlg®; 2CAlg) ~Shvza (CAlg®P; 2CAlg)
~ Fun® (Shv ., (CAlg®P), Fun'® (CAlg“°?, §))
(5.9) ~ Fun'® R (CAlg®°P x Shvza, (CAlg®P), 8)
~ Fun'® (CAlg® P, Fun® (Shvz,, (CAlg®), §))
~ Fun'® (CAlg® P, Shva: (CAlg®P))

which also holds if S/IEZar(CAlgOp) (resp. for target 2CAlg) is replaced with Fun(CAlg, g) (resp. for
target 2CAlg). Moreover, these equivalences sit in a commutative square of adjoints:

Fun(CAlg, 2CAlg) Shvza: (CAlg; 2CAlg)

T

Fun'® (CAlg® P, Fun(CAlg, §)) —— Fun'**(CAlg®°?, Shvz,, (CAlg®))

see for example the proof of [HZG, Lemma 3.27]. In particular, there is a left adjoint sheafification
with respect to the Zariski topology

Fun(CAlg, 2CAlg) — Shvz,, (CAlg®?; 2CAlg)

whose right adjoint is the natural forgetful inclusion. The desired sheafification with respect to the
canonical topology is then given by the composite

Fun(SpSch®?, 2CAlg) - Fun(CAlg, 2CAlg) — Shvyza (CAlg; 2CAlg) = Shvean(SpSch; 2CAlg).

To demonstrate claim (1), recall that the map a” is an equivalence on affine schemes by Recollec-
tion 3.21 and thus it must be sent to an equivalence after sheafification with respect to the canonical
topology, using the previous paragraph. Example 3.8 shows that it is already the case that

r(specgf;r (=), 0) € Shvean(SpSch; 2CAlg)

ar

h must be identified with the sheafification of its source.

and hence «
To conclude, it remains to identify the image of Perfr(_ 9) under sheafification with respect to the

canonical topology. By construction, this is given by the composite

SpSch < Shvya (CAlg)*? 275 5CATs
where Perf is the image of the functor Perf € Fun(CAlg, 2CAlg) under the composite
Fun(CAlg, 2CAlg) — Shvyza, (CAlg®?; 2CAlg) ~ Fun®™(Shvya, (CAlg®)°P, 2CAlg).

Recall that the functor Perf already satisfies Zariski descent on CAlg®?, which follows from the fact
that Mod satisfies Zariski descent [SAG, Corollary D.6.3.3] and the fact that passage to subcategories
of dualizable objects is a limit preserving functor. Using the argument of [SAG, Proposition 6.2.3.1],
we find that the functor Perf : Fun(CAlg, S)OP - m factors through the sheafification with
respect to the Zariski topology, and in particular that Perf ~ Perf when regarded as objects of
Fun(CAlg, Mg). It follows that Perf can be identified with the composite

Shvza: (CA1gP)%P ¢ Fun(CAlg, $)°° 2% 5CAlg
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and thus the image of Perfr(_ o) under the sheafification with respect to the canonical topology on
SpSch may be definitionally identified with the functor of perfect complexes.

Finally, the only missing component for running the arguments above in the Dirac case is the
fact that the functor Perf : CAlg — 2CAlg in fact satisfies Dirac descent. For a given R € CAlg, the
comparison map

Specgf;: SpecPir R - SpeciPir R
identifies the pushforward of the structure sheaf on the source with the unique assignment on
|SpeciPir R| satisfying {D(f) € |SpecP R|} — Perfg[ s-17 where D(f) is a basic quasicompact open
subset of |SpecPir R|, see [HZG, Section 3.E| for the structure theory and [HZG, Theorem 4.48| for
the identification of sheaves. Since this is in fact a sheaf, we may conclude that Perf satisfies descent
for Dirac covers of R, and hence that Perf satisfies Dirac descent on CAlg®P. O

5.B. A reconstruction theorem of Balmer. We now obtain Theorem D as a corollary of
Theorem 4.7.

Corollary 5.10. There is a natural comparison transformation
¥ : (Spec Perf _, iRoPerf( ,) —~id

of functors from SpSch to RToplcozlg. For a X an ordinary qcqs scheme, regarded as a O-truncated
spectral scheme, the comparison map vy evaluated on X is an equivalence.

Proof. From the natural identification of Theorem 4.7, it suffices to show the result with Spec Perf _)
replaced by Specg/. Since the relative spectrum is left adjoint to restriction, one obtains a counit
transformation

(Specg’, Rp) — id € Fun(SpSch, RToplgzlg)[l]
yielding the first part of the result. For the second, note that for any cover by affine open subsets
U Spec R; € X, one has an identification

(Specg X,Ro) xx | | SpecR; = | [(Spec] Spec Ri,Ro,) = | [(Spec Perfr,, Ro,)
1 1 1

from Proposition 3.4.(3). We thus reduce to the case where X = Spec R and may furthermore assume
R is a classical Noetherian ring by using that Specg’: CAlg — LTop(9’) is a left adjoint, and that the
restriction LTop(9") - LTop(S) preserves filtered colimits [DAGV, Corollary 1.5.4]. This case is due
to Neeman [NB92|, see for example [HZG, Theorem 4.48|. o

Warning 5.11. Note that the proof above recovers the ordinary scheme X regarded as an object of
SpSch and not simply as an ordinary ringed space. In particular, the sections of the structure sheaf
on any given open set may not be concentrated in my”. The classically ringed space associated to X
may be recovered by taking the sheafification of the assignment U ~ moOx € CAlg", which is the
context originally considered in [Bal02].

Remark 5.12. The previous strategy of proof demonstrates that for X a qcqs spectral scheme, the
underlying set of the Zariski spectrum stratifies into:

(1) A “geometric” direction, corresponding to the support theory of the underlying scheme itself.
(2) A*“homotopical” direction, corresponding to the failure of the comparison maps [Spec Perfo, .| —
|Spec Ox x| to be injective or surjective at points x € X.

9The example X = Al \ 0 supplies a case where 7_1T'(X, ) == H1(X, O) is nontrivial.
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For example, the result of Corollary 5.10 holds for regular, noetherian, locally even periodic schemes
(for example, an oriented elliptic curve over a regular noetherian even periodic Es-ring) by reduction
to the case of regular noetherian even periodic Ec-ring spectra, which is handled in [Mat15a, §2|.

Remark 5.13. It is often the case that there are interesting specializations between points in distinct
fibers of the comparison map |Spec Perfx| — |X|: see, for example, the “blueshifting” behaviour
exhibited in the fibers of the map |Spec Perfggl — |Spec n0§g| where G is a finite group and Sg
refers to the categorical fixed points of the genuine G-sphere [San25, §13].

Finally, let us mention the differences between our approach to the computation of |Spec Perfy |
for an ordinary qcgs scheme X and the approach adopted by Thomason in [Tho97].

Remark 5.14. We briefly recall the components of the argument in [Tho97|, which is a classification
of the thick tensor ideals of Perfx. By the identification between the underlying space of Spec Perfx
and the Balmer spectrum Spc Perfy, this is equivalent to the desired computation, see for example
[HZG, §4.2] for a quick overview of the same.

First, let X be a noetherian qcgs potentially non-affine scheme. The classification of thick tensor
ideals consists of two steps:

(1) Demonstrating that there are objects of Perfyx whose cohomology groups are supported on
any choice of closed subscheme Z ¢ X.

(2) Showing that any thick tensor ideal J € Perfy is determined by the union of the supports of
cohomology groups of complexes in J.

The second component follows via a nilpotence theorem for Perfy, extending the results of [Hop87|
and [NB92|. As both his and our approaches rely on these results in the affine case, the distinctions
here are at most cosmetic.

In order to demonstrate the first component, the author invokes a K-theory extension theorem to
inductively build complexes with the desired support by inducting from affines, see [KP17, Lemma
4.1.8] for a brief overview of his method along with a systematization using the “Reduction Principle”
of [BV03|. By constrast, we do not construct complexes supported on every possible closed subset
of X. In fact, the comparison transformation yx : Spec Perfx — X often fails to be surjective for a
general spectral scheme, owing to the fact that complexes with prescribed support may not always
be constructed. For an ordinary scheme, the existence of these complexes is deduced a posteriori

from the construction of a functorial comparison map and a direct reduction to the affine case.”

6. GEOMETRIZATION OF 2-RINGS
This section is dedicated to the proof of Theorem E, recorded as Theorem 6.6 below.

6.A. An aside on unigenicity. Before proceeding, it will be helpful later to systematize the exact
relation between rings and 2-rings. Recall the following notion, discussed in [HPS97] and [San25, §8|.

Definition 6.1. X € 2CAlg is unigenic if the smallest thick subcategory containing 1y is X itself.
We write 2CAlg"™ c 2CAlg to denote the full subcategory of unigenic 2-rings.

Recollection 6.2. Recall the adjunction of Definition 2.24
Perf : CAlg 2 2CAlg : R

1011 some sense, this too is almost cosmetic: the construction of requisite complexes is hidden in the iterative
process of Theorem 4.7, but we will not expand upon this here.
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whose left adjoint is fully faithful. By [HA, 7.1.2.7] and [MNN17, 7.6|, the categories of the form
Modg € CAlg(Pr;"“) for R € CAlg are uniquely categorized by the fact that their subcategories
of compact objects are unigenic, from which it follows that that the embedding Perf : CAlg —
CAlg(CatP*?) has essential image exactly the full subcategory of unigenic 2-rings. Composing the

uni

adjunction above with the equivalence CAlg ~ 2CAlg"™, we obtain an adjunction of the form

F:2CAlg™ 2 2CAlg: G
where F is the inclusion. We will deduce a formula for G below.

Lemma 6.3. The right adjoint G’ to the inclusion 2CAlg™ — 2CAlg is given by the functor
X + Thick(1y), and the counit is identified with the canonical inclusion Thick(1yx) ¢ XK.

Proof. Let X € 2CAlg arbitrary. As the left adjoint is an inclusion, [HTT, 5.2.2.7] implies that
the counit € : G(X) - XK is a terminal object of QCAlgE%{. For 14 € K, consider the thick
subcategory Thick(1yx) < K, and note that this inclusion is a morphism in 2CAlg with unigenic
domain. Furthermore, the image of any F : L — K ¢ 2(3A1g‘_”/‘3-< must be contained in Thick(1x), as
F(Thick(8)) ¢ Thick(F(8)) for S € £ any set of objects. Thus, the counit map admits a lift through
G(X) — Thick(1g). Any such lift is split by lifting the canonical inclusion Thick(1g) — X through
Thick(1x) - GK — Thick(1x), which composes to the identity. As any retract of a terminal object
must itself be terminal, we have an equivalence Thick(1g) ~ G(X) and the counit is identified with

the canonical inclusion. O
Definition 6.4. We refer to the right adjoint G’ above as the functor of unitation.

6.B. The main result. The following is Corollary C, which is obtained as an immediate consequence
of Theorem 5.3.

Corollary 6.5. For any X € 2CAlg,;, and qcgs spectral scheme X, there is an identification

mapacalg,;, (Perfy, X) ~ MAPR,ploc ((Spec XK, Ro,), X)

Alg

The same holds if X is a Dirac spectral scheme and RToplé’Zlg 1s replaced by RTopgxlg.

Proof. By Corollary 2.28 the functor Spec : 2CAlg‘r)iI; — RTopk,, ¢ is fully faithful. The claimed
result thus reduces to the identification

MAaPgroplee, (Spec K, Spec Perfy) ~ MaPproplec ((Spec XK, Ro,), X)
which is the content of Theorem 5.3. The same argument holds in the Dirac case. O

In many cases of interest, one does not simply have a map from (Spec X, Ro) to a given spectral
or Dirac spectral scheme X, but in fact an identification of this spectrally ringed space as itself a
spectral or Dirac spectral scheme. We will prove a general “geometrization” result for 2-rings of this
form as Theorem 6.6.

Theorem 6.6. Let X € 2CAlg,;, be a rigid 2-ring and X € SpSch admitting an abstract equivalence
. - 1 1
@ (SpecK,Rp,) = X € (RTop&ilg)[ ]

Then there is a fully faithful functor Perfx — XK realizing the equivalence a upon passage to Zariski
spectra. The same result holds in the Dirac case.
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Proof. The assumption forces X to be qcqs, from which Corollary 6.5 implies that the map @ induces
a functor Perfxy — K. Now let U € X be any quasi-affine open subset. By the identification of
Theorem 2.27, there is an associated commuting square of Karoubi quotients

Perfy — X

|

Perfy —— O (U).

Moreover, since a is assumed to be an equivalence of spectrally ringed spaces, it induces an
identification
(U, Ox) 2 T'(U, Roy) = Roy (W)

and hence the associated functor Perfry, 0,) = Ox(U) factors through an equivalence

Perfp(U’ox) ~ Perfggox )

with the unitation of Oy (U). Invoking Lemma 6.3, we learn that the map Perfr 0,) = Ox(U) must
be fully faithful and in fact induces an equivalence between the source and the thick subcategory
generated by the unit in the target. Furthermore, since U is assumed to be quasi-affine, the canonical
map Perfry, o0,) = Perfy must be an equivalence. Altogether, we obtain that the composite map

Perfry,0.) = Perfy — Oy (U)

is fully faithful. Since the quasi-affine open subsets form a basis of X, it follows that the map
Perfxy — X may be presented as a limit of fully faithful functors
. 1
Ugl((l_jlﬂine[PerfU ~ Oy (U)] € 2CAlgl;]
and is thus itself fully faithful. The argument does not change for the Dirac case.
The statement that the passage to Zariski spectra realizes the map a arises from the fact that the
composite
(Spec XK, Ro,.) = (SpecPerfy, RospeCPeer) - X

in RToplcofMg realizes the equivalence @, by Theorem 5.3 and the universal property of the relative
spectrum. Moreover, the map of spaces |Spec K| — |Spec Perfy | is a strong spectral quotient map by
[San25, Theorem 4.1], implying in particular that it is a homeomorphism if and only if it is injective
[San25, Corollary 2.26]. However, since @ is an equivalence, it is necessarily injective, yielding the
claim. 0

We collect some key examples below.

Ezample 6.7 (Stable module categories). Let G be a finite group of order divisible by p, and k be a
field of characteristic p. The stable module category of G over k is the object Sty € 2CAlg,;, defined
by the Verdier quotient
Strc ~ Repg (k) /Projg (k)

where Projs; (k) is the thick subcategory generated by the image of the projective representations in
Repg (k) (here by Rep, we really mean the derived category of finite-dimensional representations of G
over k). The Balmer spectrum of St is computed in [BCR9I7|, where it is shown to be homeomorphic
to Proj H*(G, k). |[BallOb, Proposition 8.8] demonstrates more, namely this homeomorphism is
realized on underlying topoi via the comparison map

(SpecStrg, Ro) — Spec9Dir Rst,e € RTopgxlg
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and the same argument easily shows that the above is an equivalence in locally spectrally ringed
spaces. However, as a spectrally ringed space, the object SpecSPir Rst, 1s in fact an ordinary spectral
scheme, given by the space Proj H*(G, k) equipped with the sheaf of spectra

{U(f) € Proj H*(G,k)} = Rst [F ]

We refer to this spectral scheme as the spectral support variety of G over k, and use the notation Vg
to denote it. By the result of Theorem 6.6, there is a fully faithful functor Perfy, — Stig. Moreover,
it can be shown that this embedding is functorial in the group G.

The primary motivation for treating the Dirac spectral setting above is the following example,
which shows that Dirac spectral schemes ought also abound in nature.

Erample 6.8. (Permutation modules) Let G be a group and R € CAlg® be an ordinary commutative
Noetherian ring. A permutation R[G]-module is an R[G] module of the form R[X] for X € SetB¢ a
G-set. Let perm(G, R) ¢ Modz[G] denote the additive category of finitely generated permutation
R[G]-modules. The tensor-product of R[G]-modules restricts to perm(G, k), and the latter is thus
an additively monoidal category.

Consider the bounded homotopy category of chain complexes in perm(G, k), denoted K (G, R).
This is a rigid tensor-triangulated category whose Balmer spectra are computed in [BG25] for the
case where R is a field, and in [DG25] for the case where R is characteristic p or a p-torsion free
Noetherian ring.

For G = E an elementary abelian group, the Balmer spectrum SpcXK(G, R) equipped with the
unique structure sheaf satisfying

Og : {U(a) < SpcX(G, R) quasicompact open} — ﬂ*Endx(G’R)/w)(l)
is shown to be a Dirac scheme in [BG25, Corollary 15.4], [DG25, Corollary 10.12]. For any given

enhancement of X(G, R) to the structure of a 2-ring, this result will also demonstrate that the
Dirac-locally spectrally ringed oo-topos

Ve = (Spec (G, R), Ro) € RTopey,,

is a Dirac spectral scheme, through which Theorem 6.6 will supply a fully faithful embedding
Perfvréerm - X(G, R). We hope to return to this observation in future work.

Finally, we remark that the same proof as in Theorem 6.6 actually supplied a slightly stronger
statement.

Theorem 6.9. Let X € 2CAlg,;, be a rigid 2-ring and X € SpSchy.,s admit a map

@ : (SpecK,Rp,) > X € (RTOplcozilg)[l]

such that the associated map Ox — a+Ro, is an equivalence in Shv(X; CAlg). Then there is a fully
faithful functor Perfx — XK.
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