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1 Introduction

Course methodology

Officially, this course services both a year-long calculus requirement as well as an introduction
to proofs (IP) prerequisite. I’m assuming that you enrolling in this course means that you’re
interested in its contents: before deciding to be here, you ought to have read what’s on the
cereal box. As stated in the syllabus, by the end of this course you should be able to:

1. Understand, formulate, and justify mathematical assertions.

2. Apply the above skills broadly towards setting up and rigorously studying the differential
and integral calculus of functions in a single variable.

This doesn’t really address the question of why we’re here though. Take for example the
phrase "justify mathematical assertions". I have not unpacked the words justify , assertion, or
even mathematical . Maybe each of you already has a comprehensive idea of what these are,
but I think it’s safe to assume that this is work in progress. Yet somehow in advance of this,
we’ve committed to assemble here on Mondays and Wednesdays this semester at 4:30-5:45 in
Krieger 309 or in my office hours at TBA. I think it’s best to update our learning objectives:

1. Define the following words: "Understand", "formulate", "justify", "mathematical" "asser-
tions", and what the concatenations thereof mean. Develop a framework their execution.

2. We then formulate an objective, which will generally involve applying the above skills
towards the differential and integral calculus of functions in a single variable.

Once again, I’m conflicted. What are "necessary preliminaries"? The differential and integral
calculus of functions in a single variable has a bunch of foundational approaches and differing
scopes, even if you fix what it means to "use proof-based techniques". Where do I start to
set up the theory, and where even do the boundaries of "the theory" lie? At the future point
where you develop your own mathematical practice, any approach I pick will seem ridiculous
to at least some of you. Maybe we update our objectives again.

1. Define the following words: "Understand", "formulate", "justify", "mathematical" "asser-
tions", and what concatenations thereof mean. Develop a framework for their execution.

2. Figure out what each of us might want to call "differential and integral calculus" for the
purposes of this course, then figure out a way to formulate it in a fashion best suited
for the application of the techniques of part 1 towards our objectives (which we will
determine).

Remark 1.0.1. At this point I began to question why I even endorsed formatting this as a
university course; surely one should be discovering one’s own calculus out in the world, not
confining oneself to the narrow domestic walls of institutional practice. I quickly found myself
working out the logistics of running a commune; for time reasons, I will not pursue this here.

Clearly, the above is much too ambitious in scope. The reality of our situation is that I’m
going to have to intervene at some point and guide our investigations in this course. For the
moment then, let’s skip answering why you’re in this course, and instead start by focusing on
how one might get here.
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1.1 Lecture 1: Issues of convergence [08/24/2025]

Example 1.1.1 (Zeno’s "Dichotomy" Paradox). Let’s say a runner (for this example, the
mythical Atalanta the huntress) needs to cross a road of length 𝐿 meters. Zeno argues first
that to cover this length 𝐿, Atalanta must first cover half the length 𝐿

2 . At the instant Atalanta
reaches this point, there is exactly 𝐿 − 𝐿

2 = 𝐿
2 remaining of the path: and in order to clear this

amount, she must first cover half of the remaining amount 𝐿
2/2 = 𝐿

4 . Applying the argument
once again at the point of covering 𝐿

2 +
𝐿
4 of the remaining distance, we see that she must again

cover at least 𝐿
8 more. Iterating this process, we see Atalanta must hit an infinite number of

points at distances 𝑝𝑘 =
𝐿
2 + ... + 𝐿

2𝑘
< 1 before she crosses the entire path.

Figure 1: Zeno’s Dichotomy Paradox: Atalanta running a length which is subdivided into half
a length, then an additional quarter, then an additional eighth, and so on, following the text of
the example.

Zeno now argues that this motion must have at least entailed performing an infinite number
of tasks: and clearly, an infinite number of tasks must take an infinite time to perform. He
concludes that the concept of "motion" itself is impossible.

Remark 1.1.2. This example has also been written in the chapter Under Heaven of the Zhuangzi,
see https://plato.stanford.edu/entries/school-names/paradoxes.html.

Well, something about this is a little fishy. As I deliver the lesson, you will probably notice
me pacing the length of the classroom and marvel at my ability to undertake such godly feats.
Clearly, there is some worth in treating infinitary processes without outright dismissal. It looks
a lot as though assuming she can perform infinite “supertasks”1 nets us the ability to say the
following:

Proposition 1.1.3. The following two quantities are equal for any number 𝐿:

𝐿 =
𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ... (1.1.4)

Note exactly how strange Proposition 1.1.3 is: I am writing a mathematical equality between
"quantities" when I’m not even sure that I can fully write down the second quantity! Let’s try
and convince ourselves of this fact arithmetically, making the assumptions below.

Assumption 1.1.5. Let’s pretend that I can perform "infinite sums" (henceforth we’ll call
them infinite series or just series) which sum to fixed quantities.

1see here
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However, at this point we’re still doing finite processes: we haven’t actually jumped into
doing a supertask quite yet. How can we actually show something is 𝐿? Since we’re dealing
with a supertask, trying to “directly compute it” is a little out the window; we’ll have to find 𝐿

another way.

Observation 1.1.6. We can show something is 𝐿 by showing that it satisfies an equation that
only 𝐿 satisfies.

1. If a given quantity 𝑥 satisfies the equation 𝑥 − 1 = 0 then 𝑥 = 1, the same is true if it
satisfies any of the equations 2𝑥 − 1 = 1, or 3𝑥 − 2 = 1, ...

2. Similarly, if a given equantity 𝑥 satisfies the equation 𝑥 − 𝐿 = 0 then 𝑥 = 𝐿, but similarly
for 2𝑥 − 𝐿 = 𝑥, or in fact 2𝑥 − 𝑥 = 𝐿.

This last observation will be the operative one for the argument below.

Argument Idea 1 for Proposition 1.1.3. Let’s try to do a little reduction with this sum. Set

𝑆 =
𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ...

We have:

𝑆 =
𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ... =⇒ 2 · 𝑆 = 2 ·

(
𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ...

)
=⇒ 2𝑆 = 𝐿 + 𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ... (1.1.7)

Notice that we’re acting as though we can distribute the multiplication by 2 across the "infinite
addition" in the final step of (0.6). Substituting 𝑆 = 𝐿

2 +
𝐿
4 +

𝐿
8 + ... again, we get:

2𝑆 = 𝐿 + 𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ... =⇒ 2𝑆 = 𝐿 + 𝑆 =⇒ 2𝑆 − 𝑆 = 𝐿 (1.1.8)

and so 𝑆 = 𝐿. □

At first blush, Argument Idea 1 seems to us a completely valid use of standard arithmetic
techniques. However, there are some problems with concluding the discussion above as we just
did.

Discussion .

What are some obvious issues with doing this?

1. The infinity issue: Sometimes I can write down formal sums (eg 1 + 1 + 1...) that look
like they’re growing without bound. In this case, I’ll pretend I’m dealing with a formal
symbol ∞ (which behaves how you might expect it to).

2. Do the standard rules of arithmetic actually work?:

Example 1.1.9 (Grandi’s Series). In this example we’re going to examine the associativity
of infinite addition and subtraction, namely if we can always add and subtract objects in any
order in an infinite process.
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Consider the infinite series2 given by

1 − 1 + 1 − 1 + 1 + ... (1.1.10)

Discussion .

If you had to pick a value of this series, what would it be? Argue it for me. Here are
some options:

1. 0

2. 1

3. 1
2

4. Impossible to say

We will show below that every single one of these answers has a reasonable justification.

First, pretending that "infinite arithmetic" works as though ordinary arithmetic does, we may
use the "associativity of infinite addition" to group Equation 1.1.10 in either of the following
ways

(1 − 1) + (1 − 1) + (1 − 1) + ... 1 + (−1 + 1) + (−1 + 1) + ...

Notice that the first series looks like 0 + 0 + 0 + ... which should clearly be 0, while the second
looks like 1 + 0 + 0 + ..., which should clearly be 1. Maybe this eliminates the ability to deal
with the "associativity of infinite addition", but the news gets a little worse: if we try to argue
as in Argument Idea 1, by studying the equations this series satisfies, we run into the following
conundrum

𝑆 = 1 − 1 + 1 − ... =⇒ 1 − 𝑆 = 1 − (1 − 1 + 1 − ...) =⇒ 1 − 𝑆 = 1 − 1 + 1 − 1... = 𝑆

where in the last step we once again assumed multiplication "distributes over infinite sums".
However, 1 − 𝑆 = 𝑆 =⇒ 2𝑆 = 1 or that 𝑆 = 1

2 .

You might here be tempted to answer 4; if this is you, you might also completely abandon
hope for Assumption 1.1.5. A natural next step would be to denounce the blasphemies of
Zeno’s Paradox and other mathematical brain-teasers like it. On your homework this week
we’re going to learn why it’s not wise to immediately discount it.

Observation 1.1.11. Let’s reexamine the mathematical observation that Figure 1 was trying
to get at. Let’s start adding up the first few terms of (1.1.4) and try to reexpress them in

2Often referred to as Grandi’s Series after Italian mathematician Guido Grandi, see this Wikipedia article
for some history and approaches to its summation
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terms of 𝐿.
𝐿

2
=

𝐿

2
𝐿

2
+ 𝐿

4
=

3𝐿

4
𝐿

2
+ 𝐿

4
+ 𝐿

8
=

7𝐿

8
𝐿

2
+ 𝐿

4
+ 𝐿

8
+ ...

(1.1.12)

Clearly our big sum grows closer and closer to 𝐿 as we sum more terms, which matches with
our visual intuition; again, you can envision Atalanta as running along a big number line. Of
course, these are still finite processes: we haven’t jumped into the realm of trying to do a
supertask quite yet. During our last attempt, we rectified this issue by just assuming that
a quantity called an “infinite sum” existed and that some entity had done the supertask for
us. To proceed, let’s instead try to isolate the specific observation that actually seems true:
namely, direct observation seems to tell us that every time we add another term in the infinite
series above, we close the gap to 𝐿.

Definition 1.1.13. An infinite list of numbers {𝑎0, 𝑎1, 𝑎2, ...} is called a sequence; we will
write this with the notation {𝑎𝑖}𝑖∈N3, with {𝑎𝑖}𝑖 as shorthand. The 𝑛th partial sum of the
sequence {𝑎𝑖}𝑖 is the following quantity

𝑠𝑛 := 𝑎0 + ... + 𝑎𝑛

given by summing up the terms of the sequence {𝑎𝑖}𝑖 from 0 to 𝑛. Using summation notation,
one has the equality

𝑠𝑛 :=
∑︁

𝑛
𝑖=0𝑎𝑖

Let’s try to write down what our new, restricted goal should be, using the language above.

Question 1.1.13.

What is the strongest thing we can convincingly assert about the relation between 𝐿

and the collection of finite processes 𝑠𝑛 for each 𝑛?

Proposition 1.1.14. For any small quantity 𝜖 > 0, there is a big enough number 𝑁 so that if
𝑛 > 𝑁 then 𝐿− 𝑠𝑛 < 𝜖. Equivalently, for any number 𝑎 < 𝐿, there is an 𝑁 > 0 so that 𝑎 < 𝑠𝑛 < 𝐿

for every 𝑛 > 𝑁.

Why? Essentially because it looks like 𝑠𝑛 = 𝐿 − 𝐿
2𝑛+1 for every 𝑛, and 𝐿

2𝑛+1 becomes very small
as 𝑛 becomes very big. □

Note that to make this argument, we still need to find a convincing principle to argue about
the behavior of infinitely many finite processes. Here, we come up against the principle of
induction as one of our main tools for doing so.

3we’ll explain this notation later
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1.2 Lecture 2: Sets, natural numbers, induction [08/26/2025]

Discussion (Inference, proof, and “first principles”).

1. What is a mathematical observation?

2. What forms a convincing argument?

3. What is the role of a proof?

4. Why do we start from “first principles”?

Recommended Reading

1. Introduction to logical statements and connectives: https:
//www.chilimath.com/lessons/introduction-to-number-theory/
intro-to-truth-tables-statements-and-connectives/

2. Inversion and contrapositive: https://www.chilimath.com/lessons/
introduction-to-number-theory/converse-inverse-and-contrapositive-of-conditional-statement/

Let’s start by defining our basic objects, the natural numbers. We will not try to show that
they exist or construct a model of them, but we will take the approach that a good theory of
the natural numbers will satisfy the following axioms.

Key Definition 1.2.0 (The Peano Axioms).

The set N of natural numbers is uniquely characterized by the following axioms:

1. There is an element 0 ∈ N.

2. For any element 𝑛 ∈ N, there is an element 𝑆(𝑛) ∈ N, called the successor of N.

3. 0 is not the successor of any element in N.

4. If 𝑛, 𝑚 ∈ N satisfy 𝑆(𝑛) = 𝑆(𝑚), then 𝑛 = 𝑚.

5. The Principle of Induction, deferred until later.

We’ll just assume there’s some set N of objects which satisfies the axioms above, and not try
to delve into actually building one from an axiomatic framework of what sets are. We will
write

1 ≔ 𝑆(0), 2 ≔ 𝑆(𝑆(0)), 3 ≔ 𝑆(𝑆(𝑆(0))), 4 ≔ 𝑆(𝑆(𝑆(𝑆(0)))), ...

Question 1.2.0.

Is 3 = 0? How might I say that it isn’t?
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Definition 1.2.1 (Informal). A recursive definition is one which defines elements in a set in
terms of other elements in a set. In particular, this is a definition that does not happen “all at
once”.

Let’s look at some examples.

Definition 1.2.2 (Addition). We define the operation of addition, denoted +, recursively as
follows. For any 𝑚 ∈ N, we set

0 + 𝑚 = 𝑚

Suppose that 𝑛 + 𝑚 has been defined for 𝑛, 𝑚 ∈ N. Then we set

𝑆(𝑛 + 𝑚) = 𝑆(𝑛) + 𝑚.

Addition is a binary operation.

Recursive definitions that work in the way above, i.e., defining elements by starting at 0 and
then defining them for all 𝑛 using the successor function, are usually best reasoned about using
induction.

Key Definition 1.2.2 (Principle of Induction).

Let 𝑃 be a property of natural numbers, such that

1. 0 satisfies 𝑃.

2. If 𝑛 satisfies 𝑃, then 𝑆(𝑛) satisfies 𝑃.

Then all natural numbers satisfy 𝑃.

Notation 1.2.3. We write 𝑃(𝑛) to indicate the property 𝑃 evaluated at a particular number 𝑛.

Remark 1.2.4. General principle: Recursion provides a method to perform computations
about elements in a set by assuming the computations about certain subcollections of elements
in a set; for example, it gives us a recipe to compute information (do a finite “task”) about any
natural number if we assume that we know the computations for the smaller numbers which
build it (here, out of the successor function). Induction is the ingredient that lets us prove
assertions about the infinite collection of finite tasks.

Let’s try to prove a basic fact about addition, the fact that 0 is an additive identity , which is
the following fact.

Proposition 1.2.5. For every 𝑚 ∈ N, 0 + 𝑚 = 𝑚 + 0 and both are equal to 𝑚.

Proof. Let us prove this by induction. Let 𝑃(𝑛) refer to the property that 𝑛 + 0 = 0 + 𝑛. In
symbols, we write:

𝑃(𝑛) : 0 + 𝑛 = 𝑛 + 0.

We start with the case 𝑛 = 0, known as the base case.

• Case 𝑛 = 0: 𝑃(0) : 0 + 0 = 0, is true from the definition of addition.

We now show that if 𝑃(𝑛) is true, then 𝑃(𝑛 + 1) is true. This is known as the inductive case.
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• Inductive case: Suppose 𝑃(𝑛) : 𝑛 + 0 = 0 + 𝑛 is true. To show 𝑃(𝑆(𝑛)), note first that
𝑆(𝑛) + 0 = 𝑆(𝑛 + 0) by the definition of addition. By the inductive case, 𝑛 + 0 = 0 + 𝑛 = 𝑛.
It follows that 𝑆(𝑛) + 0 = 𝑆(𝑛) and the latter is equal to 0 + 𝑆(𝑛) by the definition of
addition. Thus, 𝑃(𝑆(𝑛)) is true, and we finish the claim.

□

The following is another basic property of addition that we will use.

Proposition 1.2.6 (Associativity of addition). For any elements 𝑙, 𝑚, 𝑛 ∈ N, one has

𝑙 + (𝑚 + 𝑛) = (𝑙 + 𝑚) + 𝑛

Proof. Exercise 1.4.3. □

Using the above properties, let us try to prove another fundamental feature, the commutativity
of addition.

Proposition 1.2.7 (Commutativity of addition). For any 𝑛, 𝑚 ∈ N, we have that 𝑚+𝑛 = 𝑛+𝑚.

In the proposition above, there are seemingly two variables to induct on; if you like, this
is because the statement 𝑚 + 𝑛 = 𝑛 + 𝑚 is a statement about infinitely many objects 𝑚 and
infinitely many objects 𝑛. That is, given a fixed 𝑚, there is the statement that every number
𝑛 ∈ N, satisfies 𝑚 + 𝑛 = 𝑛 + 𝑚; this is a statement about infinitely many objects 𝑛. However,
there is the statement that this commutation works for every number 𝑚 that one could have
picked.

This suggest that we need two inductions, one happening on 𝑚 and then a “nested” one
happening on 𝑛 for the fixed 𝑚. Schematically, this looks like:

9



Figure 2: A schematic illustration of the two-variable induction described above

Proof of Proposition 1.2.7. We prove this using induction on 𝑚. For each fixed 𝑚, we will
prove by induction on 𝑛 that 𝑚 + 𝑛 = 𝑛 + 𝑚.

Let 𝑄(𝑚) be the property that for every 𝑛 ∈ N, one has 𝑚 + 𝑛 = 𝑛 + 𝑚.

• Base case 𝑚 = 0: We need to show 𝑄(0), i.e., for every 𝑛 ∈ N, 0 + 𝑛 = 𝑛 + 0.

We prove this by induction on 𝑛. Let 𝑃(𝑛) be the property that 0 + 𝑛 = 𝑛 + 0.

⊲ Base case 𝑛 = 0: 0 + 0 = 0 = 0 + 0

⊲ Inductive step: Assume 𝑃(𝑛), i.e., 0 + 𝑛 = 𝑛 + 0. We show 𝑃(𝑆(𝑛)):
0 + 𝑆(𝑛) = 𝑆(𝑛) (by definition of addition)
𝑆(𝑛) + 0 = 𝑆(𝑛) (by Proposition 1.2.5)

Therefore 0 + 𝑆(𝑛) = 𝑆(𝑛) + 0, so 𝑃(𝑆(𝑛)) holds.

Thus 𝑄(0) is proven.

• Inductive step: Assume 𝑄(𝑚), i.e., for every 𝑛 ∈ N, 𝑚 + 𝑛 = 𝑛 +𝑚. We show 𝑄(𝑆(𝑚)),
i.e., for every 𝑛 ∈ N, 𝑆(𝑚) + 𝑛 = 𝑛 + 𝑆(𝑚).
We prove this by induction on 𝑛. Let 𝑅(𝑛) be the property that 𝑆(𝑚) + 𝑛 = 𝑛 + 𝑆(𝑚).

⊲ Base case 𝑛 = 0:

𝑆(𝑚) + 0 = 𝑆(𝑚) (by Proposition 1.2.5)
0 + 𝑆(𝑚) = 𝑆(𝑚) (by definition of addition)

Therefore 𝑆(𝑚) + 0 = 0 + 𝑆(𝑚), so 𝑅(0) holds.
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⊲ Inductive step: Assume 𝑅(𝑛), i.e., 𝑆(𝑚) + 𝑛 = 𝑛 + 𝑆(𝑚). We show 𝑅(𝑆(𝑛)):

𝑆(𝑚) + 𝑆(𝑛) = 𝑆(𝑆(𝑚) + 𝑛) (by definition of addition)
= 𝑆(𝑛 + 𝑆(𝑚)) (by inductive hypothesis 𝑅(𝑛))
= 𝑆(𝑆(𝑛 + 𝑚)) (by definition of addition)
= 𝑆(𝑆(𝑚 + 𝑛)) (by outer inductive hypothesis 𝑄(𝑚))
= 𝑆(𝑚 + 𝑆(𝑛)) (by definition of addition)
= 𝑆(𝑛) + 𝑆(𝑚) (by definition of addition)

Therefore 𝑆(𝑚) + 𝑆(𝑛) = 𝑆(𝑛) + 𝑆(𝑚), so 𝑅(𝑆(𝑛)) holds.

Thus 𝑄(𝑆(𝑚)) is proven.

By induction on 𝑚, we have shown 𝑄(𝑚) for all 𝑚 ∈ N, completing the proof. □

Let us make another recursive definition.

Definition 1.2.8 (Multiplication). We define the operation of multiplication, denoted ·,
recursively as follows. For any 𝑚 ∈ N, we set

0 · 𝑚 = 0.

Suppose 𝑛 · 𝑚 has been defined for some 𝑛, 𝑚 ∈ N. Then we set

𝑆(𝑛) · 𝑚 = (𝑛 · 𝑚) + 𝑚.

Multiplication is a binary operation.

Proposition 1.2.9 (1 is a multiplicative identity). For every 𝑚 ∈ N, 𝑚 · 1 = 1 · 𝑚 and both
are equal to 𝑚.

Definition 1.2.10 (Exponentiation). We define the operation of exponentiation, recursively
as follows. For any 𝑚 ∈ N, we set

𝑚0 = 1.

Suppose 𝑚𝑛 has been defined for some 𝑚, 𝑛 ∈ N. Then we set

𝑚𝑆(𝑛) = 𝑚𝑛 · 𝑚

Exponentiation is, you guessed it, a binary operation.

You will prove properties of the above in this week’s homework.
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1.3 Lecture 3: The Rational Numbers and Convergence

Learning Objectives

1. Define the integers and the rational numbers axiomatically, without constructing
them.

2. Define what it means for a sequence to converge, and finally provide a resolution
to Zeno’s Dichotomy Paradox.

3. (Next time) Explain why the real numbers appear, and how to construct them
rigorously.

Last time we defined the set N of the natural numbers following the Peano Axioms. Let’s
define some other basic objects. We will define the following axiomatically ; this means that
we will assert their basic properties without explicitly constructing a set which satisfies those
properties.

Definition 1.3.1. The integers are a set, denoted Z, satisfying the following properties.

1. The set N is a subset of Z, i.e., N ⊂ Z. Moreover, addition and multiplication extend to
binary operations on all of Z.

2. For every 𝑏 ∈ Z, there exists an object −𝑏 ∈ Z satisfying 𝑏 + (−𝑏) = 0.

3. For every 𝑏 ∈ Z, either 𝑏 ∈ N or −𝑏 ∈ N.

The above properties force Z to look like N∪ {−1,−2,−3, ...} as a set. This usually takes the
familiar picture of a “number line”, where we can write elements of Z from left to right going
from “less than” to “greater than”. Let’s try to make this latter picture mathematically precise:

Definition 1.3.2. An order relation on a set 𝑆 is a relation < which satisfies:

1. If 𝑎, 𝑏 ∈ 𝑆, then either 𝑎 < 𝑏, 𝑏 < 𝑎, or 𝑎 = 𝑏. However, only one of these may be true.

2. If 𝑎 < 𝑏 and 𝑏 < 𝑐 in 𝑆, then 𝑎 < 𝑐.

In the homework, I introduced the order relation on N. This was given by saying 𝑚, 𝑛 ∈ N
satisfy 𝑚 < 𝑛 if ∃𝑟 ∈ N so that 𝑚 + 𝑟 = 𝑛. This isn’t going to work to extend this order relation
to the integers, however, as for any two numbers 𝑎, 𝑏 ∈ Z, there is always some 𝑟 so that
𝑎 + 𝑟 = 𝑏; namely, we can take 𝑟 to be 𝑏 − 𝑎. We’ll have to work a bit harder to introduce the
order relation on Z.

Example 1.3.3. Z carries an order relation <, given by 𝑚 < 𝑛 if 𝑛 − 𝑚 ∈ N. Checking that
this is indeed an order relation is an exercise.

With the above in hand, we have the following pictures of the integers.

Proposition 1.3.4. The order relation on Z satisfies the following properties.

1. (Translation Invariance) Given 𝑚, 𝑛 ∈ Z, 𝑚 < 𝑛 if and only if for every 𝑟 ∈ Z one has
that 𝑚 + 𝑟 < 𝑛 + 𝑟.
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Figure 3: A depiction of the integers written left to right as {..., -2, -1, 0, 1, 2, ...} where terms
on the left are less than terms on the right

2. (N-Scaling Invariance) Given 𝑚, 𝑛 ∈ Z, 𝑚 < 𝑛 if and only if for every 𝑟 ∈ N one has that
𝑚 · 𝑟 < 𝑛 · 𝑟.

Proof. Exercise. □

Figure 4: A pictorial depiction of the translation invariance of the integers

Let us now construct the rational numbers, once again doing so axiomatically.

Definition 1.3.5. The rational numbers are a set, denoted Q, satisfying the following properties.

1. Z is a subset of Q, in symbols Z ⊆ Q, and the addition and multiplication on Z extend
to binary operations on Q.

2. For any 𝑚 ∈ Q, if 𝑚 ≠ 0 then ∃ an object 1
𝑚
∈ Q such that 𝑚 · 1

𝑚
= 1.

3. For any 𝑚 ∈ Q, if 𝑚 ≠ 0 then ∃ integers 𝑎, 𝑏 ∈ Z such that 𝑚 = 𝑎
𝑏
.

The rational numbers are also often depicted pictorially as a number line, interspersed as a
“fine dust” between the integers. In order to do this, we’ll need to figure out a way to extend
the order on Z to an order on Q; note that this is also not immediate, because we need to
figure out how we want inverses (objects of the form 1

𝑎
for 𝑎 ∈ Z) to behave with respect to

the ordering. We’ll do this in two steps.

Definition 1.3.6. Let 𝑎, 𝑏 ∈ Z.

1. We say that 𝑎
𝑏
> 0 if 𝑎 · 𝑏 > 0.

2. For 𝑚, 𝑛 ∈ Q, we say that 𝑚 < 𝑛 if 𝑛 − 𝑚 > 0 using the definition of being > 0 given in
the previous item.

13



Figure 5: A depiction of the integers written left to right as {..., -2, -1, 0, 1, 2, ...} where
terms on the left are less than terms on the right, along with rational numbers interspersed
as a dotted line between the integer points. Some rational numbers are labelled, for example
0 < 1

2 < 1.

With the definition of the order relation above, we obtain the familiar picture of Q as a
“number line”:

Proposition 1.3.7. The order relation on Q satisfies the following properties.

1. (Translation Invariance) Given 𝑚, 𝑛 ∈ Q, 𝑚 < 𝑛 if and only if for every 𝑟 ∈ Q one has
that 𝑚 + 𝑟 < 𝑛 + 𝑟.

2. (Positive Scaling Invariance) Given 𝑚, 𝑛 ∈ Q, 𝑚 < 𝑛 if and only if 𝑟 ∈ Q, if 𝑟 > 0 then
𝑚 · 𝑟 < 𝑛 · 𝑟.

Proof. Exercise: will be on your next homework. □

The integers being a “fine dust” has a very particular interpretation, one which is exploited
greatly in proving convergence of series/approximating objects by series. This particular
technique was pioneered by Archimedes, and the following property carries his name:

Theorem 1.3.8 (Archimedean Property of the Rationals). For any 𝑚, 𝑛 ∈ Q, if 𝑚 < 𝑛 then
∃𝑐 ∈ Q such that 𝑚 < 𝑐 < 𝑛.

We will prove the above in the next lecture; however, it gives us the familiar picture of being
able to find a rational number in between any two other rational numbers in the number line:

Figure 6: A pictorial depiction of the Archimedean property on the rational number line
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1.3.1 Back to our scheduled program on the Dichotomy Paradox

Recall that our resolution to trying to compute the “supertask” involved in Zeno’s Dichotomy
Paradox (1.1.4) was to instead show that the following infinite collection of finite subtasks gets
arbitrarily close to 𝐿 as we compute larger and larger portions:

𝑠0 =
1

2

𝑠1 =
1

2
+ 1

4

𝑠2 =
1

2
+ 1

4
+ 1

8
...

𝑠𝑛 =

𝑛∑︁
𝑘=0

1

2𝑘+1

The concrete criterion that we settled on as a class was the following, which appeared as
a Proposition 1.1.14:

Proposition 1.3.9. For any small quantity 𝜖 > 0, there is a big enough number 𝑁 so that if
𝑛 > 𝑁 then 𝐿− 𝑠𝑛 < 𝜖. Equivalently, for any number 𝑎 < 𝐿, there is an 𝑁 > 0 so that 𝑎 < 𝑠𝑛 < 𝐿

for every 𝑛 > 𝑁.

More generally, the above is an example of the general phenomenon of convergence of
sequences. In order to define this, first recall the absolute value function:

| − | : Q→ {𝑥 ∈ Q : 𝑥 > 0}

given by

|𝑥 | =
{
𝑥 if 𝑥≥0 (read as greater than or equal to)
−𝑥 if 𝑥 < 0.

The absolute value function encodes the “distance” on the number line between the point
𝑥 and the point 0. Similarly, given two elements 𝑚, 𝑛 ∈ Q, the absolute value |𝑚 − 𝑛| is a
measure of the distance between 𝑚 and 𝑛. With this notion in mind, we are ready to define
the following.

Definition 1.3.10. We say a sequence of rational numbers {𝑎𝑛} converges to 𝑎 if for every
rational number 𝜖 > 0, there exists some 𝑁 ∈ N so that if 𝑚 > 𝑁 then |𝑎 − 𝑎𝑚 | < 𝜖.

In particular, for the sequence 𝑠𝑛 of finite subtasks implicated in Zeno’s Dichotomy Paradox,
we are trying to show concretely that 𝑠𝑛 converges to the length 𝐿.

Argument that the series 𝑠𝑛 converges to 𝐿. Let’s first start with an intermediate claim:

Claim: For every 𝑛 ∈ N, 𝐿 − 𝑠𝑛 =
𝐿

2𝑛+1 .
Proof of claim. Note that we’re making an argument about infinitely many tasks indexed over
the naturals, and we have exactly one tool to use here: the principle of induction.
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• Base case: 𝐿 − 𝑠0 = 𝐿 − 𝐿
2 = 𝐿

2 and so the base case holds.

• Inductive case: Suppose we know already that 𝐿 − 𝑠𝑛 = 𝐿
2𝑛+1 . We need to show that

given this fact, 𝐿 − 𝑠𝑛+1 =
𝐿

2𝑛+1 . Let’s make the following simplifications.

𝐿 − 𝑠𝑛+1 = 𝐿 − (𝑠𝑛 +
𝐿

2𝑛+2
) (Expanding out the summation notation)

𝐿 − (𝑠𝑛 +
𝐿

2𝑛+2
) = 𝐿 − 𝑠𝑛 −

𝐿

2𝑛+2
(Fact about taking negatives)

𝐿 − 𝑠𝑛 −
𝐿

2𝑛+2
=

𝐿

2𝑛+1
− 𝐿

2𝑛+2
(By the inductive hypothesis)

𝐿

2𝑛+1
− 𝐿

2𝑛+2
=

2𝐿

2𝑛+2
− 𝐿

2𝑛+2
=

1

2𝑛+2
(2𝐿 − 𝐿)

=
𝐿

2𝑛+2

which concludes the inductive case, showing that the case for 𝑛 implies the case for 𝑛 + 1.

This concludes the proof of the intermediate claim above.

Let’s now try to show the convergence directly. Namely, we need to show that given any
𝜖 > 0, we need to show that there is an 𝑁 ∈ N so that 𝑚 > 𝑁 implies that |𝐿 − 𝑠𝑚 | < 𝜖.
Henceforth, let 𝜖 > 0 be any choice. Using the claim above, we know that |𝐿 − 𝑠𝑚 | = 𝐿

2𝑚+1 . It
follows that we just need to show that there is an 𝑁 so that 𝐿

2𝑚+1 < 𝜖 for every 𝑚 > 𝑁.

Note that since 𝜖 is a rational number, we have that 𝜖 = 𝑎
𝑏

for some integers 𝑎, 𝑏 ∈ Z.
Moreover, since 𝜖 > 0, we have that 𝑎 · 𝑏 > 0. This breaks us into two possible cases.

• Case 1: 𝑎, 𝑏 > 0. In this case, we need to find an 𝑁 so that 𝐿
2𝑚+1 < 𝑎

𝑏
for any 𝑚 > 𝑁.

We’ll use the following steps.

– For any 𝑛 ∈ N, using the scaling rule for the order relation, we know that 𝐿
2𝑛+1 < 𝑎

𝑏

if and only if 𝑏 · 𝐿
2𝑛+1 < 𝑏 · 𝑎

𝑏
= 𝑎.

– Similarly, we know that 𝑏 · 𝐿
2𝑛+1 < 𝑎 if and only if 𝑏 · 𝐿 < 2𝑛+1 · 𝑎.

– Given 𝑎, 𝑏 bigger than 0, there is always some 𝑁 ∈ N so that 𝑏 · 𝐿 < 2𝑁+1 · 𝑎.
Furthermore, for any 𝑚 > 𝑁, it must be the case that 𝑏 · 𝐿 << 2𝑁+1 · 𝑎 < 2𝑚+1 · 𝑎.

It follows that in this case, there exists some 𝑁 for which any 𝑚 > 𝑁 satisfies |𝐿 − 𝑠𝑚 | =
𝐿
𝑠𝑚

< 𝑎
𝑏
= 𝜖.

• Case 2: 𝑎, 𝑏 < 0. Exercise!

As we have demonstrated the above for any particular choice of 𝜖 > 0, we may conclude. □
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1.4 Homework 1 (Due Wednesday, September 10th)

3 out of the following 5 problems will be randomly graded for correctness, the remainder will
be graded for completeness. This homework is out of a possible 24 points, with the graded
problems worth 6 points and the ungraded problems worth 3 points each.

For the problems below, keep in mind the distinction between inference for yourself, and
inference for others. Start by trying to come up with visualizations or explanations why such a
thing might be true for yourself. Then try to convince the reader using the logical framework
that we have agreed upon in class.

Finally, don’t expect to be able to do everything in this homework immediately! I expect
you to return to this once or twice with a group as we progress through the course over the
next two weeks.

Exercise 1.4.1. Prove that 𝑛 ≠ 𝑆(𝑆(𝑆(𝑛)))4 for every 𝑛 ∈ N using the Peano axioms. (Notice
that you are saying a thing about infinitely many objects, and you need to justify it for all of
them).

Exercise 1.4.2. Prove DeMorgan’s Laws for propositions: Let 𝐴 and 𝐵 be two mathematical
propositions. Then

1. ¬(𝐴 ∧ 𝐵) ⇐⇒ ¬𝐴 ∨ ¬𝐵.

2. ¬(𝐴 ∨ 𝐵) ⇐⇒ ¬𝐴 ∧ ¬𝐵.

For the above, I will accept a proof using truth tables. It may also help to unpack, in words,
what the expressions above are trying to say. Now show it for sets: Let 𝑋 be a set, and let 𝐴, 𝐵

be subsets of 𝑋 . Then

3. (𝐴 ∪ 𝐵)𝑐 = 𝐴𝑐 ∩ 𝐵𝑐.

4. (𝐴 ∩ 𝐵)𝑐 = 𝐴𝑐 ∪ 𝐵𝑐.

For 3. and 4., it might help to draw a picture to orient yourself. Then start your argument as
follows: “Suppose an element 𝑥 ∈ (𝐴 ∪ 𝐵)𝑐. Then by definition, 𝑥 satisfies...”

Exercise 1.4.3. Prove the following properties of addition and multiplication, as defined
recursively in the notes. You will only be allowed to use properties proved in the notes and the
Peano axioms.

1. (Associativity of addition) For every choice of elements 𝑛, 𝑚, 𝑙 ∈ N the following
quantities are equal

𝑛 + (𝑚 + 𝑙) = (𝑛 + 𝑚) + 𝑙.

Namely, the order in which I evaluate does not matter.

2. (Commutativity of multiplication) For every choice of elements 𝑛, 𝑚 ∈ N the following
quantities are equal

𝑛 · 𝑚 = 𝑚 · 𝑛.

4read: 𝑛 is not equal to 𝑆(𝑆(𝑆(𝑛))))
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3. (Associativity of multiplication) For every choice of elements 𝑛, 𝑚, 𝑙 ∈ N the following
quantities are equal

𝑛 · (𝑚 · 𝑙) = (𝑛 · 𝑚) · 𝑙.
Namely, the order in which I evaluate does not matter.

4. (Additive law for exponentiation) For every choice of elements 𝑛, 𝑚, 𝑙 ∈ N, the
following quantities are equal

𝑛(𝑚+𝑙) = 𝑛𝑚 · 𝑛𝑙 .

Exercise 1.4.4. Use mathematical induction to show the following expressions are true. For
this problem you are allowed to use all standard facts about division and fractions, even though
we have not defined division or proved those properties yet.

1.
∑𝑛

𝑘=0 𝑘 = 0 + 1 + 2 + · · · + 𝑛 =
𝑛· (𝑛+1)

2 .

2.
∑𝑛

𝑘=0 𝑘
2 = 0 + 12 + 22 + · · · 𝑛2 = 𝑛· (𝑛+1) · (𝑛+2)

6 .

3.
∑𝑛

𝑘=0 2𝑘 + 1 = (𝑛 + 1)2.

Definition 1.4.5. Let us define an order relation on N as follows: We say 𝑚 ≤ 𝑛 in N if there
exists 𝑎 ∈ N so that

𝑚 + 𝑎 = 𝑛.

Exercise 1.4.6 (Well-Ordering Principle). Show that any subset 𝑆 ⊆ N contains a minimal
element for the order relation ≤, namely there exists an element 𝑥 ∈ 𝑆 so that 𝑥 ≤ 𝑠 for every
other element 𝑠 ∈ 𝑆.
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2 Convergent Sequences and the Real Numbers

2.1 Lecture 4: The Uniqueness of Limits [09/08/25]

Learning Objectives

1. Prove the Archimedean Property of the rational numbers.

2. Learn what a proof by contradiction is.

3. Practice arguing about convergent sequences, and use those techniques to prove
arithmetic properties of convergent sequences.

Let’s do a quick recap of the narrative arc of the course so far.

1. In Lecture 1, we investigated supertasks which involve addition and subtraction, and
discovered that just “assuming someone could do the infinite addition” led to problems in
deciding which supertasks had answers.

2. In Lecture 2, we decided to be very careful about defining our objects and our reasoning
tools; we discussed how to define the natural numbers and its basic operations, in addition
to how to reason about them using the principle of induction.

3. In Lecture 3, we defined the integers and the rationals, and finally came up with
a framework to decide which supertasks were “doable”; these correspond to infinite
sequences of finite subtasks which converge to the right answer.

This last point is our answer to Zeno; while not every big infinite supertask can be done,
sometimes these consist of infinite sequences of finite subtasks which eventually converge to a
well-defined answer. Let’s recall these definitions below.

Definition 2.1.1. We say a sequence of rational numbers {𝑎𝑛} converges to 𝑎 if for every
rational number 𝜖 > 0, there exists some 𝑁 ∈ N so that if 𝑚 > 𝑁 then |𝑎 − 𝑎𝑚 | < 𝜖. In this
case, we say that 𝑎 is a limit of {𝑎𝑛}.

Discussion

What is the negation of the statement above?

Definition 2.1.2. We say a sequence of rational numbers {𝑎𝑛} diverges if it does not converge
to any rational number 𝑎 ∈ Q.

Exercise 2.1.3. Convince yourself that the statement of divergence may be logically represented
as

∀𝑎 ∈ Q, ∃𝜖 > 0 such that ∀𝑁 ∈ N, ∃𝑚 > 𝑁 with |𝑎 − 𝑎𝑚 | > 𝜖.

Now try to directly show the statement above for Grandi’s Series 𝑠𝑛 =
∑𝑛

𝑘=0(−1)𝑛. This should
square with our discussion of this being a “heretical” supertask.

Our first goal is to show that “doable” supertasks have well-defined answers. Following our
idea above, this boils down to the following statement.
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Theorem 2.1.4 (Uniqueness of Limits). Given a convergent sequence of rational numbers
{𝑎𝑛} with limits 𝑎, 𝑏 ∈ Q, it must be the case that 𝑎 = 𝑏. That is, if a sequence of rational
numbers converges, it converges to only one limit.

We’re going to need to develop some tools to show this statement. Our first tool comes from
a statement that we punted from the last lecture:

Theorem 2.1.5 (Archimedean Property of the Rationals). For any 𝑚, 𝑛 ∈ Q, if 𝑚 < 𝑛 then
∃𝑐 ∈ Q such that 𝑚 < 𝑐 < 𝑛.

A pictorial depiction of the above is in Figure 6.

Proof. We can just use Zeno’s trick: given some choice of 𝑚 < 𝑛, then we can try to find a
point exactly halfway between them. Recall that the distance between 𝑚 and 𝑛 is given by the
function |𝑚 − 𝑛|. It should follow that the midpoint between the two is given by 𝑚 + |𝑚−𝑛 |

2 .
Let’s try to show this actually satisfies the property we care about:

1. Claim 1: 𝑚 < 𝑚 + |𝑚−𝑛 |
2 : Note that 0 < |𝑚 − 𝑛| by construction, and so 0 <

|𝑚−𝑛 |
2 by

multiplying 1
2 to both sides. The claim follows by adding 𝑚 to both sides.

2. Claim 2: 𝑚 + |𝑚−𝑛 |
2 < 𝑛: First, note that 𝑛 = 𝑚 + |𝑚− 𝑛| (You should check this!). Thus,

this claim is equivalent to showing that 𝑚+ |𝑚−𝑛 |
2 < 𝑚+ |𝑚−𝑛|. Subtracting 𝑚 from both

sides, we are left to show that |𝑚−𝑛 |
2 < |𝑚 − 𝑛|, which you can show from the definition

by multiplying both sides by 2 and directly using the definition of the order relation on
the natural numbers.

Thus, we have that 𝑐 =
|𝑚−𝑛 |

2 satisfies the property. □

In a strong sense, the Archimedean property says that there is no such thing as an “infinitely
small number” in the rationals: between 0 and any positive rational 𝑚, you can always find a
smaller rational number between the two. This realization gives us our first important tool for
this section:

Corollary 2.1.6. For every 𝑚, 𝑛 ∈ Q, if for every 𝜖 > 0 one has that |𝑚 − 𝑛| < 𝜖, then 𝑚 = 𝑛.

To show this, we’ll have to introduce a new tool, known as a proof by contradiction.

Key Definition 2.1.7 (Proof by Contradiction).

Given mathematical statements 𝐴 and 𝐵, the following statement is always true:

((𝐴 =⇒ 𝐵) ∧ (𝐴 =⇒ ¬𝐵)) =⇒ 𝐴

Said in words, “if assuming 𝐴 showed that 𝐵 was true and and it showed that 𝐵 was not
true, then one could not have assumed 𝐴 was true. Thus, 𝐴 must have been false.

Proofs by contradiction will be a vital tool in this course, and the argument below will show
how they work.
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Proof of Corollary 2.1.6. Assume, towards a contradiction, that there is some pair 𝑚, 𝑛 ∈ Q
satisfying ∀𝜖 > 0, |𝑚 − 𝑛| < 𝜖 and that 𝑚 ≠ 𝑛. We will demonstrate that this assumption leads
to a contradiction.

Claim: There is some 𝑐 for which 0 < 𝑐 < |𝑚 − 𝑛|.

Proof of claim: Because 𝑚 ≠ 𝑛, it must be the case that 𝑚 > 𝑛 or 𝑚 < 𝑛, using the fact
that < is an order relation on Q. Thus, either 𝑚 − 𝑛 > 0 or 𝑛 − 𝑚 > 0, and thus |𝑚 − 𝑛| > 0.
However, by the Archimedean Property of the rationals, there must be some 𝑐 ∈ Q satisfying
0 < 𝑐 < |𝑚 − 𝑛|, yielding the claim.

However, we had already assumed that ∀𝜖 > 0, |𝑚 − 𝑛| < 𝜖, and the claim above proves the
negation of this sentence. By contradiction, it could not be the case that ∀𝜖 > 0, |𝑚 − 𝑛| < 𝜖

and 𝑚 ≠ 𝑛. This concludes the proof. □

Sketch

This last step might seem a little suspect to the discerning reader. Let’s try to elucidate
exactly what we did, in logical notation. Let

𝑃 : For every 𝜖 > 0, |𝑚 − 𝑛| < 𝜖

𝑄 : 𝑚 = 𝑛

We are trying to show 𝑃 =⇒ 𝑄, which is always the same as ¬(𝑃 ∧¬𝑄): you can check
this with a truth table, and sound it out in words to make sense of this. To proceed
with proof by contradiction to show ¬(𝑃 ∧ ¬𝑄), let’s assume, towards a contradiction,
that (𝑃 ∧ ¬𝑄) is true.

1. First, it’s always the case that (𝑃 ∧¬𝑄) =⇒ 𝑃; namely, if 𝑃 and anything is true,
then 𝑃 is true, so this is essentially by definition (the mathematical term for this
is tautological).

2. Second, over the course of the proof, we showed the claim that 𝑄 =⇒ ¬𝑃, and so
(𝑃 ∧ 𝑄) =⇒ ¬𝑃.

Thus, we’ve shown that ((𝑃 ∧ ¬𝑄) =⇒ 𝑃) ∧ ((𝑃 ∧ ¬𝑄) =⇒ ¬𝑃). Applying the proof
by contradiction, it must be the case that ¬(𝑃 ∧ ¬𝑄), which is what we wanted to show.

Exercise 2.1.8. Go through the proof above and annotate it by where we’ve done each step.

Now we introduce our second main tool, which is going to be a major staple of the course.

Key Theorem 2.1.9 (Triangle Inequality (Or the Importance of Good Public Transit)).

For any 𝑎, 𝑏, 𝑐 ∈ Q, one has the relation

|𝑎 − 𝑐| ≤ |𝑎 − 𝑏| + |𝑏 − 𝑐|
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Proof. Our first claim is that for any 𝑚, 𝑙 ∈ Q, |𝑙 | + |𝑚| ≥ |𝑙 + 𝑚|. The proof is left as an
exercise to the reader, which is short for “I don’t want to do it”. However, you can now set
𝑚 = 𝑎 − 𝑏 and 𝑙 = 𝑏 − 𝑐, and you’re done! □

With these in mind, we may now proceed to the proof of Theorem 2.1.4.

Proof of Theorem 2.1.4. Let 𝜖 > 0 be any choice. The following two statements we have by
assumption:

• ∃𝑁1 ∈ N so that ∀𝑚 ∈ N, if 𝑚 > 𝑁1 then |𝑎 − 𝑎𝑚 | < 𝜖
2 .

• ∃𝑁2 ∈ ∀𝜖 > ,N so that ∀𝑚 ∈ N, if 𝑚 > 𝑁 then |𝑏 − 𝑎𝑚 | < 𝜖
2 .

Set 𝑁 = max(𝑁1, 𝑁2), where the notation “max(−,−)”” means the largest of the inputs.
Then the above two statements collectively imply:

• ∀𝑚 ∈ N, if 𝑚 > 𝑁 then |𝑎 − 𝑎𝑚 | < 𝜖
2 and |𝑏 − 𝑎𝑚 | < 𝜖

2 .

Now, let’s use the triangle inequality:

|𝑎 − 𝑏| ≤ |𝑎 − 𝑎𝑚 | + |𝑎𝑚 − 𝑏| = |𝑎 − 𝑎𝑚 | + |𝑏 − 𝑎𝑚 | <
𝜖

2
+ 𝜖

2
= 𝜖

In particular, reading off the start and the end, we’ve shown that |𝑎 − 𝑏| < 𝜖. However, 𝜖 > 0
was just some random choice, and the above argument should work for any choice of 𝜖 > 0.
Really, what we’ve shown is:

• ∀𝜖 > 0, |𝑎 − 𝑏| < 𝜖.

And hence 𝑎 = 𝑏 by our argument above. □

Sketch

What’s our strategy upstairs? We’re trying to show that if:

• 𝑎𝑚 gets arbitrarily close to 𝑎

• 𝑎𝑚 also gets arbitrarily close to 𝑏

then by triangle inequality we can show that 𝑎 and 𝑏 must have been arbitrarily close
together. So close, in fact, that they must have been equal.

Exercise 2.1.10. Try to annotate the proof of Theorem 2.1.4 in logical notation, similar to
how we annotated Corollary 2.1.6.

In this, we see the basic flow of a convergence argument: we’re trying to show some statement
∀𝜖 > 0, so we start our proofs by letting 𝜖 > 0 be some arbitrary choice. The rest of our
argument is now not allowed to make any references to the specific properties of 𝜖 used, outside
of any reductions to specific choices of 𝜖. In this way, we show that the argument works for
every possible choice. We’ll see this technique a lot in the next lecture.
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2.2 Lecture 5: The Algebraic Limit Theorem [09/10/25]

Learning Objectives

Prove the Algebraic Limit Theorem.

The aim of this class is to prove the following.

Key Theorem 2.2.1 (Algebraic Limit Theorem).

Given convergent sequences 𝑎𝑛 and 𝑏𝑛 with limits 𝑎 and 𝑏, the following are true:

1. Given any 𝑐, lim𝑛 ↦→∞(𝑐 · 𝑎𝑛) = 𝑐 · 𝑎

2. lim𝑛 ↦→∞(𝑎𝑛 + 𝑏𝑛) = 𝑎 + 𝑏

3. lim𝑛 ↦→∞(𝑎𝑛 · 𝑏𝑛) = 𝑎 · 𝑏

4. lim𝑛 ↦→∞
(
𝑎𝑛
𝑏𝑛

)
= 𝑎

𝑏
.

Proof. [Abb15, §2.3 The Algebraic and Order Limit Theorems]. □

2.3 Lecture 6: Cauchy Sequences, Completeness, and the Real Numbers

Learning Objectives

• Explain the need for the real numbers

• Define what the real numbers are, using a modification of the Axiom of Complete-
ness

• Prove that least upper bounds exist in the real numbers.

• Prove that bounded monotone sequences converge in the real numbers.

This week we’ll finally expand the scope of what we’re discussing from sequences of rational
numbers to sequences of real numbers. Before we do that, let’s take a quick second to explain
why one might want to think about them, using a very classical argument.

Proposition 2.3.1 (There is no rational square root of 2). There does not exist an 𝑎 ∈ Q
satisfying 𝑎2 = 2. Equivalently, for every 𝑎 ∈ Q, 𝑎2 ≠ 2.

Proof. Assume, towards a contradiction, that such an 𝑎 exists. Then 𝑎 ∈ Q, so there are
integers 𝑚, 𝑛 ∈ Z so that 𝑎 = 𝑚

𝑛
, and we may furthermore assume that 𝑚 and 𝑛 have no

common factors by reducing to lowest terms.
By assumption, (𝑚

𝑛
)2 = 𝑚2

𝑛2
= 2, so 𝑚2 = 2𝑛2. Since 𝑚 and 𝑛 have no common factors, we

have that 2 divides 𝑚2 and does not divide 𝑚. However, since 2 is prime, it must divide 𝑚

itself, and so 22 = 4 must divide 𝑚2. However: 𝑚2 = 2𝑛2, so we have shown that 4 must divide
2𝑛2 and hence 2 must divide 𝑛. This is a contradiction: 𝑚 and 𝑛 were selected to have no
common factors!
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Thus, 𝑎 ∈ Q satisfying 𝑎2 = 2 could not have existed. In other words, there is no rational
square root of 2. □

However, there’s reason for us to want to write down something like a
√
2. For one, there’s

an easy visual representation of it using the Pythagorean theorem:

Figure 7: A depiction of the square root of 2 appearing as the hypotenuse of a right triangle
with sides of length 1, along with a depiction of the square root of 2 as a “missing” point in the
rational number line

For another, the picture above suggests that it’s possible to uniformly approximate
√
2 by a

sequence of rational numbers. You’ll see an example of this in Homework 2 this week.

Proposition 2.3.2. There is a sequence of positive rational numbers {𝑎𝑛} which does not
converge to a rational number, but which satisfies lim𝑛→∞{𝑎2𝑛} = 2.

Figure 8: A depiction of a sequence which appears to be converging to the square root of 2.

Such a sequence looks as though it’s converging to something, but clearly whatever it
converges to cannot be a rational number, since the Algebraic Limit Theorem would imply
that whatever it converged to would be a square root of 2. Instead, what it converges to is
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a real number . But in order to talk about real numbers, we need to characterize the kind of
sequence that this is.

Definition 2.3.3. We say that a sequence {𝑎𝑛} is a Cauchy sequence if it satisfies the following:
∀𝜖 > 0, there exists an 𝑁 ∈ N so that for every 𝑚, 𝑛 > 𝑁, we have that |𝑎𝑚 − 𝑎𝑛 | < 𝜖.

Take a second to internalize this definition: it says that the elements of a sequence eventually
all get very close to each other, instead of making reference to another element, a limit, that
it gets closer to. The sequence we just constructed turns out to be an example of a Cauchy
sequence: this is instructive to check.

Exercise 2.3.4. Prove that any convergent sequence is a Cauchy sequence.

We are now ready to discuss the real numbers.

Key Definition 2.3.5 The Reals.

The real numbers are a set, denoted R, satisfying the following properties.

1. The rational numbers are contained in R, i.e. Q ⊆ R.

2. Addition and multiplication extend to binary operations on R, while the order
relation also extends to R. In particular, the order relation on Q extends to R,
and so does the absolute value function.

3. Every real number is the limit of a sequence of rational numbers.

4. (Axiom of Completeness) Every Cauchy sequence converges in R.

The rational numbers satisfy every one of the conditions above up until the Axiom of
Completeness: it is this last feature which makes the real numbers useful. Let’s first note that
convergent sequences have the same nice behaviour in the real numbers that we’re used to in
the rationals:

Theorem 2.3.6. The following results hold for the real numbers.

1. If 𝑎, 𝑏 ∈ R satisfy |𝑎 − 𝑏| < 𝜖 for every 𝜖 > 0, then 𝑎 = 𝑏.

2. The Triangle Inequality.

3. Convergent sequences have unique limits.

4. The Algebraic Limit Theorem for convergent sequences.

Proof. Part 1. of the above follows from the density of the rationals in R, see Problem 2 of
Homework 2. The remaining parts have the exact same proofs as their analogues in Q. In
particular, convergent sequences have the exact same nice behaviour as usual. □

Definition 2.3.7. Let’s say a sequence {𝑎𝑛} is monotone increasing if ∀𝑛 ∈ N, 𝑎𝑛 < 𝑎𝑛+1, and
monotone decreasing if ∀𝑛 ∈ N, 𝑎𝑛+1 < 𝑎𝑛. We say a sequence is simply monotone if it is either
monotone increasing or descreasing.
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Definition 2.3.8. Recall that a sequence {𝑎𝑛} is bounded if there is a positive real number
𝑀 ∈ R such that 0 ≤ |𝑎𝑛 | ≤ 𝑀 for every 𝑀 ∈ R.

We now note the following new behaviour of convergent sequences:

Theorem 2.3.9 (Monotone Convergence Theorem). If a sequence of real numbers {𝑎𝑛} is
bounded and monotone, then it must converge.

Proof. By the Axiom of Completeness and , it suffices to show that the bounded monotone
sequence {𝑎𝑛} is a Cauchy sequence. We’ll first handle the case when {𝑎𝑛} is monotone
increasing. In the other case, we can just multiply by −1 to get something which is increasing,
find a limit of the resultant sequence, and then use the Algebraic Limit Theorem to multiply
by −1 again.

Now assume towards a contradiction that {𝑎𝑛} isn’t a Cauchy sequence. Then there exists
some 𝜖 > 0 such that for any choice of 𝑁 ∈ N, there are 𝑚 > 𝑛 > 𝑁 satisfying |𝑎𝑚 − 𝑎𝑛 | > 𝜖.
Since we assumed the sequence was monotone increasing, we learn that 𝑎𝑛 + 𝜖 < 𝑎𝑚.

Thus, for 𝑎0 there is an 𝑎𝑛1 with 𝑎0 + 𝜖 < 𝑎𝑛1 , and similarly for every 𝑎𝑛𝑖 there is an 𝑎𝑛𝑖+1
satisfying 𝑎𝑛𝑖 + 𝜖 < 𝑎𝑛𝑖+1 . In this way, we can construct an ascending sequence

𝑎0 < 𝑎𝑛1 < 𝑎𝑛2 < ... < 𝑎𝑛𝑘 < ...

where 𝑎0 + 𝑘 · 𝜖 < 𝑎𝑛𝑘 . Since 𝜖 > 0, we may eventually choose 𝑘 to be so large that 𝑎0 + 𝑘 · 𝜖 is
positive and also 𝑎0 + 𝑘 · 𝜖 > 𝑀 ; however, this is a contradiction, since we constructed 𝑎𝑛𝑘 in
the sequence satisfying 𝑎𝑛𝑘 > 𝑎0 + 𝑘 · 𝜖, but by the assumption of boundedness, every element
of the sequence had absolute value less than 𝑀.

It follows that the sequence must be Cauchy, and hence that it converges. □

Exercise 2.3.10. Annotate the logic of the proof by contradiction above. Then try to find a
least possible value for 𝑘 in the last part of the argument.
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Figure 9: A graphical depiction of the Monotone Convergence Theorem and its disproof.
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2.4 Lecture 7: Bolzano-Weierstrass and Least Upper Bounds [09/17/25]

Let’s examine some consequences of the monotone convergence theorem.

Proposition 2.4.1 (Direct Comparison Test). Let 𝑎𝑛, 𝑏𝑛 be sequences of positive real numbers.
Assume moreover that ∀𝑣 ∈ N, 𝑎𝑛 ≤ 𝑏𝑛. Then we have the following.

1. If the series
∑∞

𝑘=0 𝑏𝑘 converges (i.e., if the sequence of partial sums 𝑠𝑛 =
∑𝑛

𝑘=0 𝑏𝑘 converges),
then the series

∑∞
𝑘=0 𝑎𝑘 converges.

2. If the series
∑∞

𝑘=0 𝑎𝑘 diverges (i.e., if the sequence of partial sums 𝑡𝑛 =
∑𝑛

𝑘=0 𝑎𝑘 diverges),
then the series

∑∞
𝑘=0 𝑏𝑘 converges.

Proof. For part 1, note that since every element of the sequence {𝑎𝑘} is positive, the sequence
𝑡𝑛 =

∑𝑛
𝑘=0 𝑎𝑘 is monotone increasing, and similarly the sequence 𝑠𝑛 =

∑𝑛
𝑘=0 𝑏𝑘 is monotone

increasing. We realise the following two facts.

1. Set 𝑠 ≔ lim𝑛→∞ 𝑠𝑛 = lim𝑛→∞(∑𝑛
𝑘=0 𝑏𝑘). It is not hard to see that ∀𝑘, 𝑠𝑘 ≤ 𝑠; the sequence

𝑠𝑘 is monotone increasing, and thus the limit is always greater than any individual finite
sum (Check this formally!).

2. Since we assumed that ∀𝑘, 𝑎𝑘 ≤ 𝑏𝑘, we have that ∀𝑛, 𝑡𝑛 ≤ 𝑠𝑛 and thus 𝑡𝑛 is less than 𝑠.

Since 𝑡𝑛 is bounded above by 𝑠 and monotone, we may apply Theorem 2.3.9 and conclude.
Part 2 is exactly the contrapositive of part 1, and hence we’ve already shown it. (Verify this

for yourself!). □

Example 2.4.2 (Harmonic Series). Let’s use the above to show that the following series
diverges:

{𝑎𝑘} =
1

𝑘
, 𝑠𝑛 =

𝑛∑︁
𝑘=1

𝑎𝑘 =

𝑛∑︁
𝑘=0

1

𝑘

which is known as the harmonic series. We’ll do this by direct comparison: for any positive
number 𝑛, the number 2⌈log2 𝑛⌉ represents the smallest natural number power of 2 that is still
larger than 𝑛.5 In particular, we have the relation 𝑛 ≤ 2⌈log2 𝑛⌉ . Let’s define the sequence

{𝑏𝑛} ≔
1

2⌈log2 𝑛⌉

which, when written out explicitly starting from 𝑛 = 1, is the sequence {1, 12 ,
1
4 ,

1
4 ,

1
8 ,

1
8 ,

1
8 , ...}.

By the discussion above, it’s clear that for every 𝑛, 𝑏𝑛 ≤ 𝑎𝑛 because 1
2⌈log2 𝑛⌉ ≤ 1

𝑛
. In order to

show that
∑𝑛

𝑘=0
1
𝑛

diverges, it will be sufficient by the Direct Comparison Test to show that
𝑡𝑛 ≔

∑𝑛
𝑘=0

1
2⌈log2 𝑛⌉ diverges.

5The notation ⌉𝑥 ⌈ is the ceiling function, and is the function sending a real number 𝑥 to the smallest integer
that is greater than 𝑥; the identification in the sentence above should follow.
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Why is this latter fact true? Well, notice the following pattern:

𝑡1 = 1 + 1

2

𝑡4 = 1 + 1

2
+ 1

2
= 1 + 1 = 2

𝑡8 = 1 + 1

2
+ 1

2
+ 1

4
+ 1

4
+ 1

4
+ 1

4
= 1 + 1 + 1 = 3

...

(2.4.3)

It seems a lot like there’s a pattern emerging. Here’s a guess for what it might be, and I’m
going to throw it below for you to do.

Exercise 2.4.4. Prove, by induction, that 𝑡2𝑛 = 𝑛. Deduce that the sequence of partial sums
𝑡𝑛 ≔

∑𝑛
𝑘=0

1
2⌈log2 𝑛⌉ diverges. Applying the direct comparison test, conclude that the Harmonic

Series diverges.

While the Monotone Convergence Theorem is a useful fact, it turns out that one can get away
without monotonicity as long as one is willing to work with a weakened version of convergence
instead. For this, we’ll need to introduce the notion of a subsequence.

Definition 2.4.5. Let {𝑎𝑛} be a sequence of real numbers. A subsequence of {𝑎𝑛} is a sequence
of the form {𝑎𝑛1 , 𝑎𝑛2 , 𝑎𝑛3 , ...} where {𝑛1 < 𝑛2 < 𝑛3 < ....} is an infinite subset of the naturals.

Discussion

Write an example of a sequence which:

1. Does not converge to anything, but has a subsequence that does.

2. Is not monotone increasing/decreasing, but has a subsequence that is.

Bonus points if you can do one that isn’t Grandi’s series.
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Our last main result for today is the following fact.

Theorem 2.4.6 (Bolzano-Weierstrass). Any bounded sequence has a convergent subsequence.

Figure 10: A depiction of a bounded monotone sequence converging on the left hand side, and
on the right hand side a depiction of a bounded sequence that does not converge, but wanders
around a bit.

Our strategy will be to show the following instead:

Proposition 2.4.7. Any infinite sequence has a monotone subsequence.

Remark 2.4.8. How might we prove a statement like the above? Given an arbitrary infinite
sequence, it should be unlikely that we are able to manually construct a monotone subsequence:
we are unable to assume anything that lets us construct such a thing! We’ll instead go about
by trying to prove this by contradiction.

Proof. Assume, towards a contradiction, that there is an infinite sequence 𝑎𝑛 without any
monotone subsequences. In particular, it has no monotone decreasing subsequences.

Claim: There is a 𝑘 ∈ N so that ∀𝑙 > 𝑘, 𝑎𝑘 ≥ 𝑎𝑙. In other words, 𝑎𝑘 is a minimum. Let’s
call such an element a “valley” (or if you like, a minimum).

Proof of claim: By a nested contradiction: suppose that for every 𝑎𝑙, there was an 𝑚 > 𝑙

with 𝑎𝑙 ≥ 𝑎𝑚. Then let us construct a monotone decreasing subsequence as follows: set
𝑎𝑛0 = 𝑎0, set 𝑎𝑛1 to be some element such that 𝑛1 > 0 and 𝑎0 ≥ 𝑎𝑛1 , set 𝑎𝑛2 to be some
element with 𝑛2 > 𝑛1 and 𝑎𝑛1 ≥ 𝑎𝑛2 , and so on. Thus, we have produced a monotone
decreasing subsequence

𝑎0 = 𝑎𝑛0 ≥ 𝑎𝑛1 ≥ 𝑎𝑛2 ≥ 𝑎𝑛3 ≥ ...

which contradicts our assumption that 𝑎𝑛 has no monotone decreasing subsequences.
Thus, the claim must follow.

Thus, we have found a valley, i.e., an element 𝑎𝑘 for which 𝑎𝑘 ≥ 𝑎𝑙 for any 𝑙 > 𝑘. I’ve included
a picture below.
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Figure 11: A depiction of a valley, along with the proof by contradiction that one must exist.

Claim: For any valley 𝑎𝑙, there is another valley 𝑎𝑚 with 𝑚 > 𝑙 and 𝑎𝑙 ≤ 𝑎𝑚.

Proof of claim: Since the sequence {𝑎𝑛} has no monotone decreasing subsequences, we
have that the subsequence {𝑎𝑘+1, 𝑎𝑘+2, 𝑎𝑘+3...} which starts from 𝑘 + 1 must also have no
monotone subsequences. The same proof as above must produce an valley 𝑎𝑚 with 𝑚 > 𝑙.
Since 𝑎𝑙 is a valley we have that 𝑎𝑙 ≤ 𝑎𝑚. This shows the following claim.

Set 𝑎𝑚0 = 𝑎𝑙 the first valley that we found. Set 𝑎𝑚1 to be any valley with 𝑚1 > 𝑚0. Similarly,
set 𝑎𝑚𝑘

to be any valley with 𝑚𝑘 > 𝑚𝑘−1. It follows that we’ve produced an infinite subsequence

𝑎𝑚0 ≤ 𝑎𝑚1 ≤ 𝑎𝑚2 ≤ 𝑎𝑚3 ≤ ...

which is monotone increasing by construction. Contradiction! {𝑎𝑛} was assumed to have no
monotone subsequences at all; it follows that no such sequence {𝑎𝑛} can exist.

Figure 12: A depiction of a monotone increasing subsequence of valleys.

□
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The Bolzano-Weierstrass Theorem now follows:

Proof of Theorem 2.4.6. By combining Proposition 2.4.7 and Theorem 2.3.9, we have that any
bounded subsequence has a bounded monotone subsequence which is thus convergent. □
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2.5 Homework 2 (Due Friday, September 26th)

3 out of the following 6 exercises graded for correctness, the remainder will be graded for
completeness. I have marked the graded ones with an asterisk (∗). This homework is out of a
possible 24 points, with the graded exercises worth 6 points and the ungraded exercises worth
2 points each.

Finally, don’t expect to be able to do everything in this homework immediately! I expect
you to return to this once or twice with a group as we progress through the course over the
next two weeks.

The following exercise should be doable with what you know as of Lecture 5,
09/10/25:

Exercise 2.5.1. (Cesaro Means) Show that if {𝑥𝑛} is a convergent sequence, then the
sequence given by the averages

𝑦𝑛 =
𝑥1 + 𝑥2 + 𝑥3 + ... + 𝑥𝑛

𝑛

is convergent, and converges to the same limit.

The following exercises will require us to talk about the real numbers, Cauchy
Sequences, and the Monotone Convergence Theorem, which will be the subject of
Lecture 6:

Exercise 2.5.2 (∗). [Density of the Rationals] Using the axiomatic characterization of the real
numbers, show that for any real numbers 𝑎 ∈ R and 𝑏 ∈ R that there is a rational number 𝑟

satisfying 𝑎 < 𝑟 < 𝑏.

Definition 2.5.3. Let {𝑎𝑛} be a sequence of real numbers. The sequence 𝑠𝑛 =
∑𝑛

𝑘=0 𝑎𝑘 is
referred to as its associated sequence of partial sums. For example, the sequence 𝑎𝑛 =

1
𝑛

has
associated sequence of partial sums 𝑠𝑛 = 1 + 1

2 +
1
3 + ... + 1

𝑛
.

As shorthand, we usually write
∑∞

𝑘=0 𝑎𝑛 to refer to the limit of the sequence 𝑠𝑛, and refer to
this as its infinite series: note that this is consistent with us viewing this as a supertask.

The following two items are referred to as the divergence test and the absolute convergence
test for series respectively. These are easy ways of checking whether or not a given series is
“summable”, i.e., whether the infinite summation supertask has an answer, without actually
computing what the answer is.

Exercise 2.5.4 (∗). Let 𝑎𝑛 be a sequence of real numbers, and 𝑠𝑛 =
∑𝑛

𝑘=0 𝑎𝑘 be its associated
series. Then show the following.

1. If the sequence {𝑎𝑛} does not converge to 0, then its associated series {𝑠𝑛} does not
converge to anything.

2. Let 𝑎′𝑛 = |𝑎𝑛 |, and let its associated sequence of partial sums be denoted 𝑠′𝑛 =
∑𝑛

𝑘=0 |𝑎𝑛 |.
Show that if 𝑠′𝑛 converges, then 𝑠𝑛 also converges (although not necessarily to the same
limit).
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Afterwards, give an example of a sequence that converges to 0 whose associated series does not
converge, and prove that it does not (hint: you can find the most well-known one in Abbott).

Definition 2.5.5. Let 𝑓 : R→ R be a function. We say 𝑓 is a contraction mapping if it satisfies
the following: ∃0 < 𝐶 < 1 some constant so that for every pair 𝑥, 𝑦 ∈ R, | 𝑓 (𝑥)− 𝑓 (𝑦) | < 𝐶 · |𝑥− 𝑦 |.

Exercise 2.5.6 (∗). Given a contraction mapping 𝑓 , show that for every 𝑥 ∈ R the sequence
{𝑥, 𝑓 (𝑥), 𝑓 ( 𝑓 (𝑥)), ..., 𝑓 (◦𝑛) (𝑥), ...} converges. Then show that the result 𝐿 ≔ lim𝑛 ↦→∞ 𝑓 (◦𝑛) (𝑥)
satisfies 𝑓 (𝐿) = 𝐿. This is known as a fixed point of 𝑓 .

Remark 2.5.7. What’s the point of the above? We want to find a fixed point of 𝑓 by using the
following general idea:

𝑓 ◦ 𝑓 (◦∞) (𝑥) = 𝑓 (◦∞+1) (𝑥) = 𝑓 (◦∞) (𝑥).
This is another example of an infinite supertask, this time not involving addition: we tried to
“apply 𝑓 infinitely many times”: of course, this isn’t a well-defined thing that you or I could do.
Instead, we reasoned about the infinite sequence of finite tasks, which involved composing 𝑓

finitely many times.

To caution you that supertasks usually have bad answers unless you assume something nice,
let’s do the following:

Exercise 2.5.8. Give an example of a function 𝑓 : R→ R and an input value 𝑥 ∈ R for which
the sequence {𝑥, 𝑓 (𝑥), 𝑓 ( 𝑓 (𝑥)), ...} does not converge. If you haven’t already, give an example
for which this corresponding sequence is bounded, but still does not converge to a limit.

Exercise 2.5.9 (Heron’s Method). Using Exercise 2.5.6, show that the following sequence
converges and find its limit:

𝑥0 ∈ R, 𝑥𝑛+1 =
1

2
· (𝑥𝑛 +

2

𝑥𝑛
).
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3 Continuity

3.1 Lecture 9: Defining Continuous Functions [9/29/25]

Learning Objectives

1. Define what a continuous function is, using our intuition about “not lifting our
pencil”.

2. Prove that a continuous function is exactly one which preserves limits of convergent
sequences.

Figure 13: A depiction of the graph of a function which is “continuous” in the sense that
drawing it did not require one to lift their pencil.

Generally, we regard the above to be the graph of a “continuous” function, because I did not
have to lift my pencil.

Discussion (Not lifting my pencil)

Why did I not have to lift my pencil to draw this? What precise quality of the function
is this getting at?

Key Definition 3.1.1 (Continuity of a Function).

Let 𝐴 ⊆ R be some domain, and 𝑐 ∈ 𝐴 an element. A function 𝑓 : 𝐴 → R is continuous
at 𝑐 if it satisfies the following condition:

∀𝜖 > 0, ∃𝛿 > 0 such that for any 𝑥 ∈ 𝐴 if 𝑥 satisfies |𝑥 − 𝑐| < 𝛿, then | 𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖

35



The statement above is best understood through its negation:

“∃𝜖 > 0 such that ∀𝛿 > 0, there exists some 𝑥 ∈ 𝐴 satisfying |𝑥−𝑐| < 𝛿 but | 𝑓 (𝑥)− 𝑓 (𝑐) | > 𝜖.”

What is this saying? This says that there’s some distance 𝜖 around the value 𝑓 (𝑐) for which
any small neighborhood around 𝑐 will always find some point 𝑥 whose output value 𝑓 (𝑥) is
further than 𝜖 away from 𝑐.

Exercise 3.1.2. Write down the correct negation for yourself, then check that the statement
above is the correct negation.

Let’s try to understand this in the specific example below.

Example 3.1.3 (A Discontinuous Function). Consider the piecewise function 𝑓 : (0,∞) → R

given by:

𝑓 (𝑥) =
{
𝑥2 if 0 < 𝑥 < 2

𝑥 if 𝑥 ≥ 2

Let’s look at the graph of this function to convince ourselves it should look discontinuous at
2, i.e., it is not continuous at 2. Take a second to look at the figure below carefully.

Figure 14: A depiction of the graph of the function described in Example 3.1.3, along with a
shaded in region indicating a neighborhood of size 𝜖 around 𝑓 (2) = 2 on the 𝑦-axis

Let’s orient ourselves with what we’re looking at:
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• Here the point under consideration is 𝑐 = 2, and we’ve fixed some given distance 𝜖.

• In order to graph this function, I had to “jump” from the values at points on the left
hand side of 𝑥 = 2 to the actual value at 𝑥 = 2.

• In doing so, I specifically had to jump across some vertical distance, and that given
distance is bigger than the 𝜖 graphed above.

In our parlance above, using our notion of discontinuity I want to try to establish the
following: For every possible choice of 𝛿 > 0, there is a point 𝑥 satisfying

• |𝑥 − 2| < 𝛿.

• | 𝑓 (𝑥) − 𝑓 (2) | > 𝜖

This is implemented in the figure below, where I’ve picked some random choice of 𝛿. Notice
how the “jumping” behaviour shows up below. No matter how close I got to 2 on the 𝑥-axis, I
always find a point whose output under 𝑓 is further than 𝜖 away from 𝑓 (2). Here:

1. The statement “no matter how close you get to 2” is implemented by the statement
∀𝛿 > 0.

2. The fact that I can find a point whose output under 𝑓 is further than 𝜖 away from 𝑓 (2) is
implemented by the subsequent statement ∃𝑥 satisfying |𝑥 − 2| < 𝛿 but | 𝑓 (𝑥) − 𝑓 (2) | > 𝜖.

Figure 15: A depiction of the graph of the function described in Example 3.1.3, now with a
shaded-in region indicating a neighborhood of size 𝛿 around 2 on the 𝑥-axis

Continuous functions are defined exactly to eliminate the behaviour above, and in this way
they eliminate “jumping”. In the next lecture we will prove the Intermediate Value Theorem,
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which will fully encode this connection for us. The final part of this lecture is the proof of
the following theorem, which provides us with an alternate view on how to regard continuous
functions.

Key Theorem 3.1.4 (Continuous Functions Are Exactly Those Which Respect Limits).

Let 𝑓 : 𝐴 → R be some function, and 𝑐 ∈ 𝐴 some point. Then 𝑓 is continuous at 𝑐 if
and only if ∀ sequences {𝑎𝑛} ⊆ 𝐴 which converge to 𝑐, lim𝑛→∞ 𝑓 (𝑎𝑛) = 𝑓 (𝑐).

In short, 𝑓 is continuous if and only if 𝑓 sends all sequences converging to 𝑐 to sequences
converging to 𝑓 (𝑐). The proof will be instructive practice in using the definition.

Proof. Let’s first show that if a function 𝑓 is continuous at 𝑐 and {𝑎𝑛} is a sequence converging
to 𝑐, we have that lim𝑛→∞ 𝑓 (𝑎𝑛) = 𝑐. Concretely, we need to show the following.

Claim: ∀𝜖 > 0, ∃𝑁 ∈ N so that if 𝑛 > 𝑁 then | 𝑓 (𝑎𝑛) − 𝑓 (𝑐) | < 𝜖.

Proof of claim: Fix some choice of 𝜖 > 0. We know that by the assumption of continuity,
there exists some particular 𝛿 > 0 so that if |𝑥 − 𝑐| < 𝛿 then | 𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖. By the
assumption of converging of {𝑎𝑛}, there exists an 𝑁 ∈ N so that if 𝑛 > 𝑁 then |𝑎𝑛− 𝑐| < 𝛿.
By the assumption on 𝛿, we learn that | 𝑓 (𝑎𝑛) − 𝑓 (𝑐) | < 𝜖. Thus, for this choice of 𝜖 > 0
there exists 𝑁 ∈ N so that for every 𝑛 > 𝑁, we have that | 𝑓 (𝑎𝑛) − 𝑓 (𝑐) | < 𝜖, yielding the
claim.

The above demonstrates the claim that

( 𝑓 is continuous at 𝑐) =⇒ ( 𝑓 sends all sequences converging to 𝑐 to sequences converging to 𝑓 (𝑐)).

Since this is an if and only if statement, we now need to show the other direction, namely that:

( 𝑓 sends all sequences converging to 𝑐 to sequences converging to 𝑓 (𝑐)) =⇒ ( 𝑓 is continuous at 𝑐)

We’re going to prove this statement by contrapositive. The major reason one might want to do
this is because negation turns ∀ statements into ∃ statements. Sometimes it’s easier to work
with ∃ statement, because these come down to constructing something specific. This brings us
to trying to show the following claim.

Claim: If 𝑓 is not continuous at 𝑐, then there exists a sequence {𝑎𝑛} converging to 𝑐

such that { 𝑓 (𝑎𝑛)} does not converge to 𝑓 (𝑐).

• Proof of claim: Let’s try to build such a sequence by hand. From the definition if 𝑓 is not
continuous at 𝑐, then ∃ some particular 𝜖 > 0 so that for every 𝛿 > 0, there’s an 𝑥 ∈ 𝐴

satisfying |𝑥 − 𝑐| < 𝛿 but | 𝑓 (𝑥) − 𝑓 (𝑐) | > 𝜖.

Thus, if we pick a sequence of distances 𝛿1 > 𝛿2 > 𝛿3 > ... all going to 0, we can find
points 𝑥𝑛 satisfying |𝑥𝑛 − 𝑐| < 𝛿𝑛 but | 𝑓 (𝑥𝑛) − 𝑓 (𝑐) | > 𝜖 stays a fixed distance away from
𝑓 (𝑐). This is the key insight in building the desired sequence.

Let’s build the sequence as follows:

– Let 𝑥0 ∈ 𝐴 be some point satisfying |𝑥0 − 𝑐| < 1 and | 𝑓 (𝑥0) − 𝑓 (𝑐) | > 𝜖.
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– Let 𝑥1 ∈ 𝐴 be some point satisfying |𝑥1 − 𝑐| < 1
2 and | 𝑓 (𝑥1) − 𝑓 (𝑐) | > 𝜖.

– Let 𝑥2 ∈ 𝐴 be some point . . .

– Let 𝑥𝑛 ∈ 𝐴 be some point satisfying |𝑥𝑛 − 𝑐| < 1
2𝑛+1 and | 𝑓 (𝑥1) − 𝑓 (𝑐) | > 𝜖.

And so on and so forth. By construction, the sequence {𝑥𝑛} converges to 𝑐, because for
every 𝑁 ∈ N we have that 𝑛 > 𝑁 implies that |𝑥𝑛 − 𝑐| ≤ 1

2𝑛+1 < 1
2𝑁+1 and for any 𝜖1 > 0 we

can find a 1
2𝑚 smaller than 𝜖1. However, for every 𝑛 ∈ N the value of | 𝑓 (𝑥𝑛) − 𝑓 (𝑐) | > 𝜖;

this means that the sequence { 𝑓 (𝑥𝑛)} can’t converge to 𝑓 (𝑐), because it stays at least
a fixed distance away from 𝑓 (𝑐). This completes the claim: we’ve built the desired
sequence.

This completes the proof of the theorem. □

Warning 3.1.5.

Note that continuous functions only respect limits of sequences which already converge.
Namely, continuous functions do NOT have to send divergent sequences to divergent
sequences. Consider the example of the constant function 𝑓 : R→ R given by 𝑓 (𝑥) = 0.
This function sends any sequence to a sequence converging to 0; in particular, it sends
all divergent sequences to convergent sequences. However, it’s clearly continuous.

3.2 Lecture 10: Least Upper Bounds and The Intermediate Value Theorem
[10/1/25]

Learning Objectives

Objectives for today:

1. Recall what the least upper bound property is.

2. Explore multiple ways to characterize least upper bounds.

3. Use their existence to prove the Intermediate Value Theorem.

In this lecture, we will provide another reconciliation of our definition of continuous functions
with the idea of “not requiring one to lift their pencil while graphing”. This will be supplied by
the following Very Important Theorem about continuous functions.

Key Theorem 3.2.1 (Intermediate Value Theorem).

Let 𝑓 : [𝑎, 𝑏] → R be a continuous function. If 𝑓 (𝑎) ≠ 𝑓 (𝑏), then for any value 𝑑 in
between 𝑓 (𝑎) and 𝑓 (𝑏), there is an element 𝑐 ∈ [𝑎, 𝑏] so that 𝑓 (𝑐) = 𝑑.

Before we show this, we’ll need to recall some preliminaries on least upper bounds.
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3.2.1 The Least Upper Bound Property of the Reals

Key Definition 3.2.2 (Least Upper Bounds).

Let 𝐴 ⊆ R be a nonempty subset of real numbers.

1. We say that 𝐴 admits an upper bound if there exists some 𝑀 ∈ R so that ∀𝑥 ∈
𝐴, 𝑥 ≤ 𝑀. Any choice of such an 𝑀 is called an upper bound of 𝐴.

2. We say that 𝑀 ∈ R is a least upper bound for 𝐴 if it is an upper bound of 𝐴, and
for every upper bound 𝑁 of 𝐴, 𝑀 ≤ 𝑁.

The following trick is a very useful reformulation of the property of being a least upper
bound.

Proposition 3.2.3. Let 𝐴 ⊆ R be some nonempty subset of the real numbers. 𝑀 ∈ R is a
least upper bound for 𝐴 if and only if:

1. 𝑀 is an upper bound of 𝐴.

2. For every 𝜖 > 0, there exists an 𝑎 ∈ 𝐴 so that 𝑀 − 𝜖 < 𝑎.

Proof. Let’s show the forward direction first: namely, if 𝑀 is a least upper bound of 𝐴, then it
satisfies conditions (1) and (2) above.

𝑀 is a least upper bound of 𝐴 =⇒

𝑀 satisfies condition (1): This is part of the definition of being a least upper bound.

𝑀 satisfies condition (2): Fix 𝜖 > 0. Since 𝑀 is a least upper bound, 𝑀 − 𝜖 cannot
be an upper bound of 𝐴, since 𝑀 − 𝜖 < 𝑀. Thus, there must exist some 𝑎 ∈ 𝐴 so
that 𝑀 − 𝜖 < 𝑎.

It remains to show the backward direction: namely, that satisfying conditions (1) and (2) of
the proposition is enough to imply being least upper bound. To this end, let 𝑀 ∈ R be some
element satisfying conditions (1) and (2).

𝑀 satisfies conditions (1) and (2) =⇒ 𝑀 is a least upper bound of 𝐴: By assumption,
𝑀 is an upper bound of 𝐴. It remains to show that if 𝑁 ∈ R is any other upper bound
of 𝐴, then 𝑀 ≤ 𝑁. By contrapositive, this amounts to showing that if 𝑁 < 𝑀, then 𝑁

cannot be an upper bound of 𝐴. From this it is clear: if 𝑁 < 𝑀, then 𝑁 = 𝑀 − 𝜖 for some
𝜖 > 0, and condition (2) implies that there exists 𝑥 ∈ 𝐴 such that 𝑁 = 𝑀 − 𝜖 < 𝑎. Thus,
𝑁 cannot be an upper bound unless it is greater than 𝑀.

□

From the above, we can immediately deduce the following rather useful corollary.

Corollary 3.2.4. Let 𝐴 ⊆ R be some nonempty subset of the real numbers, and 𝑀 ∈ R be an
upper bound of 𝐴. Then 𝑀 is a least upper bound if and only if there exists some sequence {𝑎𝑛}
of elements of 𝐴 such that 𝑙𝑖𝑚𝑛→∞𝑎𝑛 converges to 𝑀.
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Proof. Let’s first try to show the forward direction: namely, let’s first assume 𝑀 is a least
upper bound, and try to build this sequence by hand.

𝑀 is a least upper bound =⇒ there is a sequence in 𝐴 converging to 𝑀: From
Proposition 3.2.3, we know that 𝑀 is a least upper bound if and only if for every
𝜖 > 0, there exists an 𝑎 ∈ 𝐴 so that 𝑀 − 𝜖 < 𝑎. Using this, we can build a sequence by
hand as follows:

Let 𝑎1 ∈ 𝐴 be selected so that 𝑀 − 1 < 𝑎1 ≤ 𝑀.
Let 𝑎2 ∈ 𝐴 be selected so that 𝑀 − 1

2 < 𝑎2 ≤ 𝑀.
Let 𝑎3 ...
Let 𝑎𝑛 ∈ 𝐴 be selected so that 𝑀 − 1

𝑛
< 𝑎𝑛 ≤ 𝑀.

...

We claim that the constructed sequence 𝑎𝑛 converges to 𝑀. Fix any 𝜖 > 0, there exists
some 𝑁 ∈ N so that 0 < 1

𝑁
< 𝜖. By construction, for every 𝑛 > 𝑁, we have that

𝑀 − 1
𝑛
< 𝑎𝑛 ≤ 𝑀 and hence that |𝑀 − 𝑎𝑛 | < 𝜖. Such a selection worked for any arbitrary

choice of 𝜖 > 0, and thus this sequenve must converge to 𝑀.

We now show the other direction, namely that if 𝑀 is an upper bound and the limit of a
sequence in 𝐴 then it is a least upper bound of 𝐴.

𝑀 is an upper bound of 𝐴 and 𝑀 is the limit of a sequence in 𝐴 =⇒ 𝑀 is the least
upper bound of 𝐴: We again invoke Proposition 3.2.3 here. Suppose that there exists a
sequence {𝑎𝑛} of elements of 𝐴 with limit 𝑀. Fix any 𝜖 > 0. Convergence of 𝑎𝑛 implies a
weaker statement, namely that there exists some 𝑎𝑛 satisfying |𝑀 − 𝑎𝑛 | < 𝜖. However,
since 𝑀 is an upper bound of 𝐴, it must be the case that 𝑎𝑛 ≤ 𝑀. Altogether, we have
that 𝑀 − 𝜖 < 𝑎𝑛 ≤ 𝑀. Since 𝜖 > 0 was an arbitrary choice, we learn that for any 𝜖 > 0
we may find 𝑎 ∈ 𝐴 so that 𝑀 − 𝜖 < 𝑎 ≤ 𝑀. By Proposition 3.2.3, we may conclude that
𝑀 is a least upper bound.

□

In your Discussion Worksheet 2 from last week, you in fact proved the following wonderful
feature of the real numbers, which will be of critical importance in our next couple lectures.

Key Theorem 3.2.5 (The Least Upper Bound Property).

If 𝐴 ⊆ R is any nonempty subset admitting an upper bound, then it admits a least
upper bound.

The argument is another “sequence-construction” style of proof. I highly recommend going
back and re-attempting the proof for a better understanding of why this works with our current
formulation of the reals.

Exercise 3.2.6. Show that the least upper bound property implies that Cauchy sequences
converge in the reals. In this way, the least upper bound property is an alternate formulation of
“completeness”, known as Dedekind-completeness.
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Notation 3.2.7. The least upper bound of a nonempty subset 𝐴 ⊂ R is denoted sup 𝐴, and
referred to as its supremum.

Remark 3.2.8. There is a dual notion of “greatest lower bound” of a set 𝐴, where lower bounds
and greatest lower bounds are exactly flipped. The “greatest lower bound” of 𝐴 is always
identified with (−1) · sup((−1) · 𝐴), since multiplying by (−1) reverses orders (check this!).

Notation 3.2.9. The greatest lower bound of a nonempty subset 𝐴 ⊆ R is denoted inf 𝐴, and
referred to as its infimum.

3.2.2 A Useful Exercise

Exercise 3.2.10. Show that if {𝑎𝑛} is a convergent sequence consisting of elements in some
closed interval [𝑎, 𝑏], them lim𝑛→∞ 𝑎𝑛 ∈ [𝑎, 𝑏]. Concretely, show that if ∀𝑛 ∈ N 𝑎 ≤ 𝑎𝑛 ≤ 𝑏,
then the same is true of the limit.

3.2.3 The Proof of the Intermediate Value Theorem

Let’s go back to trying to show the intermediate value theorem, whose statement we recall
below.

Theorem 3.2.11 (Intermediate Value Theorem). Let 𝑓 : [𝑎, 𝑏] → R be a continuous function.
If 𝑓 (𝑎) ≠ 𝑓 (𝑏), then for any value 𝑑 in between 𝑓 (𝑎) and 𝑓 (𝑏), there is an element 𝑐 ∈ [𝑎, 𝑏]
so that 𝑓 (𝑐) = 𝑦.

What’s the idea? If I “draw the graph of the function without lifting my pencil”, then to
get from 𝑓 (𝑎) to 𝑓 (𝑏), I needed to intersect the line at 𝑦 = 𝑑 somewhere. This heuristic is
illustrated below.
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Figure 16: A depiction of the graph of a continuous function 𝑓 : [𝑎, 𝑏] → R with a value
𝑓 (𝑎) < 𝑦 < 𝑓 (𝑏), and the graph intersecting the line at 𝑦 = 𝑑

We’re going to try to prove this by contradiction. If we assume that a function did not
intersect 𝑦 = 𝑑, then our intuition will be that it failed to do so for one of the following reasons:

Figure 17: A depiction of the “right-most point” of the set where where 𝑓 takes values less than
𝑑. There are two cases: either the value of 𝑓 at this right-most point is strictly less than 𝑑, or
it is strictly greater than 𝑑.

Turning this into mathematics, the “right-most point” of the set of points where 𝑓 is still
less than 𝑑 is concretely given by sup{𝑥 ∈ [𝑎, 𝑏] | 𝑓 (𝑥) < 𝑑}; the ability to even refer to such a
point is given by being able to refer to least upper bounds. This is an important way in which
we’ll use them, and we’ll see it in action below.
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Proof of Theorem 3.2.11. Assume, towards a contradiction, that there does not exist 𝑐 ∈ [𝑎, 𝑏]
so that 𝑓 (𝑐) = 𝑑. Then for every 𝑥 ∈ [𝑎, 𝑏], we have that either 𝑓 (𝑥) > 𝑑 or 𝑓 (𝑥) < 𝑑. Consider
the set 𝐴 := {𝑥 ∈ [𝑎, 𝑏] | 𝑓 (𝑥) < 𝑑} of points where 𝑓 takes value strictly less than 𝑑. Since
𝑓 (𝑎) < 𝑑, we know that 𝐴 is nonempty. By the least upper bound property, 𝐴 admits a least
upper bound, denoted sup 𝐴.

Now note that since 𝐴 ⊆ [𝑎, 𝑏], the element 𝑏 is an upper bound of 𝐴 and thus sup 𝐴 ≤ 𝑏.
Furthermore, since 𝑎 ∈ 𝐴, we have that sup 𝐴 ≥ 𝑎. Thus, sup 𝐴 ∈ [𝑎, 𝑏], and thus the function
𝑓 must be defined on it. We have two cases for the value of sup 𝐴.

Case 1: 𝑓 (sup 𝐴) < 𝑑 In this case, we have that sup 𝐴 < 𝑏 since 𝑓 (𝑏) > 𝑑. Fix
any 0 < 𝜖 < |𝑏 − sup 𝐴|. Using the exact same method of proof as in Corollary 3.2.4,
we may construct a sequence of elements {𝑏𝑛} in [𝑎, 𝑏] such that 𝑏𝑛 > sup 𝐴 and
lim𝑛→∞ 𝑏𝑛 = sup 𝐴.

By construction, we have that 𝑓 (𝑏𝑛) > 𝑑 for every 𝑛 ∈ N, as 𝑏𝑛 > sup 𝐴 and thus
𝑏𝑛 ∉ 𝐴. Since 𝑓 is assumed to be continuous, it must be the case that lim𝑛→∞ 𝑓 (𝑏𝑛) =
𝑓 (lim𝑛→∞ 𝑏𝑛) = 𝑓 (sup 𝐴) by the main result of Lecture 9.

Contradiction! By Exercise 3.2.10 if { 𝑓 (𝑏𝑛)} is a sequence of elements strictly greater
than 𝑑, it must be the case that lim𝑛→∞ 𝑓 (𝑏𝑛) = 𝑓 (lim𝑛→∞ 𝑏𝑛) = 𝑓 (sup 𝐴) ≥ 𝑑. However,
this case assumed that 𝑓 (sup 𝐴) < 𝑑.

Case 2: 𝑓 (sup 𝐴) > 𝑑 This is the exact flip of Case 1, except we may construct a
sequence which breaks continuity as a direct consequence of Corollary 3.2.4. The details
are left as an exercise (but I must emphasize again that this is a direct flip of the first
case).

As in both cases we may derive a contradiction, it must have been the case that the premise,
i.e. � 𝑐 ∈ [𝑎, 𝑏] such that 𝑓 (𝑐) = 𝑑, was false. The theorem follows. □

3.3 Lecture 11: The Extreme Value Theorem and Uniform Continuity [10/6/25]

3.3.1 The Boundedness and Extreme Value Theorems

Learning Objectives

Prove the Extreme Value Theorem, using the Bolzano-Weierstrass Theorem.

The following is a useful fact, and follows from the Bolzano-Weierstrass Theorem coupled
with Exercise 3.2.10.

Exercise 3.3.1. Show that if {𝑎𝑛} is an arbitrary sequence of real numbers in [𝑎, 𝑏], then it
has a convergent subsequence {𝑎𝑛𝑘} whose limit is also in [𝑎, 𝑏].
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Using the above, we will prove today’s major result:

Key Theorem 3.3.2 (Extreme Value Theorem).

Let 𝑓 : [𝑎, 𝑏] → R be a continuous function. Then there exists a point 𝑐 ∈ [𝑎, 𝑏] so that
∀𝑥 ∈ [𝑎, 𝑏], 𝑓 (𝑥) ≤ 𝑓 (𝑐). Such a point will be called a maximum of the function 𝑓 on
[𝑎, 𝑏].

The proof of the above will witness two applications of the same general trick, namely the
use of Exercise 3.3.1. Let’s remark a little about the difference in strategy to the previous
lecture.

- In Lectures 8 and 9 we directly constructed convergent sequences which satisfied or flouted
certain properties, see for example the proofs of Corollary 3.2.4 and Theorem 3.2.11.

- In this lecture, however, we will find that at best we can only build an arbitrary sequence
of numbers in [𝑎, 𝑏].

Our key insight will be the use of Exercise 3.3.1 to guarantee a convergent subsequence of
the original sequence, and often we have enough control to make this subsequence “do what we
want”. Let’s see this first in the following example.

Theorem 3.3.3 (Boundedness Theorem). Let 𝑓 : [𝑎, 𝑏] → R be a continuous function. Then
𝑓 is bounded; that is to say, there exists an 𝑀 > 0 so that ∀𝑥 ∈ [𝑎, 𝑏], | 𝑓 (𝑥) | ≤ 𝑀.

Proof. Assume, towards a contradiction, that 𝑓 is not bounded. Then for every 𝑛 ∈ N ⊆ R,
there exists an element 𝑥𝑛 ∈ [𝑎, 𝑏] satisfying | 𝑓 (𝑥𝑛) | > 𝑛. In this way, we may build a sequence
{𝑥𝑛} of elements in [𝑎, 𝑏].

If this sequence itself converged, we’d be done: if 𝑥𝑛 converged, then it had to converge to
some 𝑥 ∈ [𝑎, 𝑏], and by continuity we’d have 𝑙𝑖𝑚𝑛→∞ 𝑓 (𝑥𝑛) = 𝑓 (𝑥). However, the sequence
𝑓 (𝑥𝑛) is not bounded and thus has no limit, i.e., it cannot converge. Contradiction! It must be
the case that no such convergent sequence existed.

However, we do not know whether or not {𝑥𝑛} converges. This is where the ingenuity of
Exercise 3.3.1 comes in: we know that {𝑥𝑛} had to have a convergent subsequence {𝑥𝑛𝑘}.
Moreover, by our assumption on the original sequence, we know that | 𝑓 (𝑥𝑛𝑘) | > 𝑛𝑘 ∈ N. In
particular, since 𝑛𝑘 is an increasing sequence of natural numbers indexed over 𝑘, the sequence
𝑓 (𝑥𝑛𝑘) must not have been bounded.

Contradiction! If {𝑥𝑛𝑘} converges to some 𝑥 ∈ [𝑎, 𝑏], then 𝑓 (𝑥) = lim𝑘→∞ 𝑓 (𝑥𝑛𝑘). However, a
limit of the sequence { 𝑓 (𝑥𝑛𝑘)} cannot exist, as by construction it is not a bounded sequence. □

Warning 3.3.4. The conclusion of Theorem 3.3.3 really really needs it to be the case that we’re
working with the closed interval [𝑎, 𝑏]. Namely, the boundedness theorem fails in the cases
(𝑎, 𝑏), (𝑎, 𝑏], [𝑎, 𝑏). Let’s explore an example.

Example 3.3.5 (Failure of the Boundedness Theorem). Consider the function 𝑓 (𝑥) = 1
𝑥

on
the interval (0, 1). This is continuous everywhere that it is defined; however, it is very much
not bounded, as the following diagram indicates.
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Figure 18: A depiction of the failure of 𝑓 (𝑥) = 1
𝑥

to be bounded on the open interval (0, 1).

Why did the boundedness theorem fail in this example? Looking at the proof, given a
sequence in [𝑎, 𝑏], we needed to be able to find a convergent sequence with a limit inside [𝑎, 𝑏];
of course, this is just not true in (0, 1). Consider the sequence { 1

𝑛
}, which converges to 0, a

point outside the range of definition of 𝑓 (𝑥).

46



Figure 19: A depiction of the unbounded sequence { 𝑓 ( 1
𝑛
)}.

Thus, the boundedness theorem follows from:

1. Continuity being well-behaved with respect to limits

2. The domain of definition containing limits of convergent sequences.

However, it is also possible to say more in the case where the domain does not contain limits
of convergent sequences, by asking for our continuous functions to be well-behaved with respect
to Cauchy sequences. This will be the notion of uniform continuity, discussed below.

Our next order of business is to finish the proof of the Extremal Value Theorem, the statement
of which we recall below.
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Theorem 3.3.6 (Extreme Value Theorem). Let 𝑓 : [𝑎, 𝑏] → R be a continuous function.
Then there exists a point 𝑐 ∈ [𝑎, 𝑏] so that ∀𝑥 ∈ [𝑎, 𝑏], 𝑓 (𝑥) ≤ 𝑓 (𝑐). Such a point will be called
a maximum of the function 𝑓 on [𝑎, 𝑏].

Proof. We’re going to do the same sequence-construction argument. By the Boundedness
Theorem Theorem 3.3.3, we know that the range of 𝑓 , given by Range( 𝑓 ) ≔ {𝑦 ∈ R | ∃ 𝑥 ∈
[𝑎, 𝑏] such that 𝑓 (𝑥) = 𝑦} admits an upper bound, and hence admits a least upper bound. Let
us refer to the least upper bound of Range( 𝑓 ) with the notation sup 𝑓 , and refer to it as the
supremum of f .

Our goal will be to show that ∃𝑐 ∈ [𝑎, 𝑏] so that 𝑓 (𝑐) = sup 𝑓 . To this end, note that
Corollary 3.2.4 supplies a sequence of the form {𝑦𝑛} converging to sup 𝑓 with each {𝑦𝑛} ∈
Range( 𝑓 ). By definition of the range, we have that there is some sequence {𝑥𝑛} in [𝑎, 𝑏] such
that 𝑓 (𝑥𝑛) = 𝑦𝑛 for every 𝑛.

Now, using our result Exercise 3.3.1, we have that {𝑥𝑛} admits a convergent subsequence
{𝑥𝑛𝑘} with limit 𝐿 ∈ [𝑎, 𝑏]. Furthermore, by continuity, we know that 𝑓 (𝐿) = lim𝑘→∞ 𝑓 (𝑥𝑛𝑘).
Since 𝑓 (𝑥𝑛𝑘) is a subsequence of the convergent sequence 𝑓 (𝑥𝑛), we know that lim𝑘→∞ 𝑓 (𝑥𝑛𝑘) =
lim𝑛→∞ 𝑓 (𝑥𝑛) = sup 𝑓 . Altogether, we find that 𝑓 (𝐿) = sup 𝑓 , and we have constructed the
desired point by setting 𝑐 = 𝐿. □

Note that the conclusions of the Extreme Value Theorem also fail in the cases that the
conclusions of the Boundedness Theorem fail, for example 𝑓 (𝑥) = 1

𝑥
.

3.3.2 Uniform Continuity

Let us now introduce a new notion, meant to rectify what’s going on with 𝑓 (𝑥) = 1
𝑥
. This will

also be our first introduction to bounding “rates of change”, as a prelude of what’s to come
next lecture. Let’s first understand what exactly went wrong with 𝑓 (𝑥) = 1

𝑥
.

Example 3.3.7 (Failure of Boundedness Revisited). Why did 𝑓 (𝑥) fail to be bounded on
(0, 1)? One answer is that its domain of definition didn’t contain all of its limits; however, on
the interval (1, 2) it was bounded. What exactly happened here? One answer is provided by
looking at “how fast the function 𝑓 (𝑥) = 1

𝑥
changed” near the point 0. Namely, even though it

was continuous near 0, the Cauchy sequence { 1
𝑛
} was not sent to a Cauchy sequence in the

reals, as is shown in Figure 3.3.2

So although continuity sent convergent sequences to convergent sequences whenever the
function was defined at its limit, they do not have to send Cauchy sequences to Cauchy
sequences in general. Let us introduce a finer notion than continuity to remedy this deficit.

Definition 3.3.8. A function 𝑓 : 𝐴 → R is uniformly continuous on 𝐴 if for every 𝜖 > 0, there
exists a 𝛿 > 0 so that if 𝑥, 𝑦 ∈ 𝐴 is any pair satisfying |𝑥 − 𝑦 | < 𝛿, then | 𝑓 (𝑥) − 𝑓 (𝑦) | < 𝜖.

Note the contrast in definition to ordinary continuity:

• With ordinary continuity, we say that at a particular point 𝑐 ∈ 𝐴, there is some choice of
𝛿 > 0 so that |𝑥 − 𝑐| < 𝛿 implies | 𝑓 (𝑥) − 𝑓 (𝑐) | < 𝜖. In some sense, this is local choice: the
choice of 𝛿 at some 𝑐 may not work for other points in 𝐴.
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• For uniform continuity, we demand to be able to find a choice of 𝛿 that works for every
possible pair 𝑥, 𝑦 ∈ 𝐴. This is a global choice

Let’s look back at the example of 𝑓 (𝑥) = 1
𝑥
.

Example 3.3.9 ( 𝑓 (𝑥) = 1
𝑥

is not uniformly continuous). This function fails uniform continuity
on (0, 1): for example, taking 𝜖 = 1

2 , for any 𝛿 > 0 it is always possible to find two points 𝑥, 𝑦

satisfying |𝑥 − 𝑦 | < 𝛿 but | 1
𝑥
− 1

𝑦
| > 1

2 . For example, taking 𝑥 = 1
𝑛

and 𝑦 = 1
𝑛+1 , one has that

|𝑥 − 𝑦 | = | 1
𝑛
− 1

𝑛 + 1
| = | 1

𝑛(𝑛 + 1) |, | 𝑓 (𝑥) − 𝑓 (𝑦) | = |𝑛 − (𝑛 + 1) | = 1 > 𝜖

and for any 𝛿 > 0 we can always find some big enough 𝑛 so that 1
𝑛(𝑛+1) < 𝛿, showing that no 𝛿

can work for all pairs. This is illustrated below.

Figure 20: A depiction of the failure of 𝑓 (𝑥) to be uniformly continuous: it is always possible
to find two points 𝑥 and 𝑦 so that | 𝑓 (𝑥) − 𝑓 (𝑦) | = 1 > 𝜖 = 1

2 , but 𝑥 and 𝑦 can be chosen to be
arbitrarily close together.
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Exercise 3.3.10. Show that if 𝑓 : 𝐴 → R is uniformly continuous and {𝑎𝑛} is a Cauchy
sequence in 𝐴, then { 𝑓 (𝑎𝑛)} is a Cauchy sequence in R.

We will explore more properties of uniformly continuous functions on this week’s homework.
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3.4 Homework 3 (Due Friday, October 10th)

3 out of the following 6 exercises graded for correctness, the remainder will be graded for
completeness. I have marked the graded ones with an asterisk (∗). This homework is out of a
possible 24 points, with the graded exercises worth 6 points and the ungraded exercises worth
2 points each.

Finally, don’t expect to be able to do everything in this homework immediately! I expect
you to return to this once or twice with a group as we progress through the course over the
next two weeks.

Exercise 3.4.1. Prove that if 𝑓 : 𝐴 → R and 𝑔 : 𝐵 → R are continuous functions, then
𝑓 ◦ 𝑔 : 𝑓 −1(𝐵) → R is a continuous function.

Here we write 𝑓 −1(𝐵) to refer to the collection of points of 𝐴 which are sent to 𝐵 by the
function 𝑓 . This is called the preimage of 𝑓 , in case you want to Google it.

Exercise 3.4.2. (∗) Prove that the function 𝑓 (𝑥) = 𝑥
𝑚
𝑛 is continuous for any natural numbers

𝑚, 𝑛. You will probably benefit from using Exercise 3.4.1.

Exercise 3.4.3. (∗) Solve [Abb15, Exercise 4.3.2].

The following exercises will need to invoke the Intermediate Value Theorem, which will be
proved in Lecture 10 on [10/1/25].

Exercise 3.4.4. Show that any polynomial function with odd degree has at least one root in R.

Exercise 3.4.5. Show that any continuous one-to-one function 𝑓 : 𝐴 → R is monotone, i.e.,
it is either strictly increasing (𝑥 < 𝑦 =⇒ 𝑓 (𝑥) < 𝑓 (𝑦)) or strictly decreasing (𝑥 < 𝑦 =⇒
𝑓 (𝑥) > 𝑓 (𝑦)).

Exercise 3.4.6. (∗) If a function 𝑓 : 𝐴 → R is one-to-one, then we can define its inverse
function on the range of 𝑓 – denoted 𝑓 (𝐴) – uniquely specified by the expression

𝑔( 𝑓 (𝑥)) = 𝑥.

Show that if 𝑓 : 𝐴 → R is continuous, then 𝑔 : 𝑓 (𝐴) → R is also continuous.
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4 Derivatives and Differential Calculus

4.1 Interlude: Class Worksheet on Derivatives and Differentiability [10/8/2025]

In this worksheet, we will define what the derivative of a function is, in addition to proving its
basic properties. Before we get started, let’s review some rates-of-change basics.

4.1.1 Warm-up: Rates of Change

Let 𝑓 : (𝑎, 𝑏) → R be a function, and 𝑥1, 𝑥2 ∈ [𝑎, 𝑏] be two points.

Exercise 4.1.1. Recall the formula for the function whose graph is the unique line which passes
through the points (𝑥1, 𝑓 (𝑥1)) and (𝑥2, 𝑓 (𝑥2)).
Recall that the difference quotient between 𝑥1 and 𝑥2 is given by the following formula

𝐷 𝑓 (𝑥1, 𝑥2) =
𝑓 (𝑥2) − 𝑓 (𝑥1)

𝑥2 − 𝑥1

The expression 𝐷 𝑓 (𝑥1, 𝑥2) measures the slope of the line connecting the two points 𝑓 (𝑥1) and
𝑓 (𝑥2). Concretely, it measures the average rate of change between the points 𝑥1 and 𝑥2.
Remark 4.1.2. The notation 𝐷 𝑓 (𝑥1, 𝑥2) is nonstandard; I picked it because I felt like it.

4.1.2 Differentiability

Key Definition 4.1.3 (Differentiability).

We say a function 𝑓 : (𝑎, 𝑏) → R is differentiable at 𝑐 ∈ (𝑎, 𝑏) if the following holds:

“For every convergent sequence {𝑥𝑛} in (𝑎, 𝑏) with limit 𝑐, the associated sequences

{𝐷 𝑓 (𝑥𝑛, 𝑐)} =
{
𝑓 (𝑥𝑛) − 𝑓 (𝑐)

𝑥𝑛 − 𝑐

}
all converge and have the same limit.”

Whenever this is the case, we simply write lim𝑥→𝑐 𝐷 𝑓 (𝑐, 𝑥) to indicate that any choice
of sequence converging to 𝑐 gives the same answer.

Exercise 4.1.4. Show that 𝑓 : (𝑎, 𝑏) → R is differentiable at 𝑐 ∈ (𝑎, 𝑏) if and only if the
following holds:

“For every sequence {ℎ𝑛} converging to 0 which moreover satisfies |ℎ𝑛 | < |𝑐 − 𝑎| and
|ℎ𝑛 | < |𝑐 − 𝑏|, the associated sequences

{𝐷 𝑓 (𝑐 + ℎ𝑛, 𝑐)} =
{
𝑓 (𝑐 + ℎ𝑛) − 𝑓 (𝑐)
(𝑐 + ℎ𝑛) − 𝑐

}
all converge and have the same limit.”

Exercise 4.1.5. Show that if a function 𝑓 : (𝑎, 𝑏) → R is differentiable at 𝑐 ∈ (𝑎, 𝑏), then it is
also continuous at 𝑐. (Hint: try to show that 𝑓 preserves limits of sequences converging to 𝑐.
Namely, show that “lim𝑥→𝑐 𝑓 (𝑥) − 𝑓 (𝑐) = 0”)
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4.1.3 Algebraic Properties of Differentiation

Whenever a function 𝑓 : (𝑎, 𝑏) → R is differentiable at a point 𝑐 ∈ (𝑎, 𝑏), we will use the
notation

𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

= lim
𝑥→𝑐

𝐷 𝑓 (𝑥, 𝑐)

and refer to this quantity as the derivative of 𝑓 at 𝑐.

Exercise 4.1.6 (Linearity of the Derivative). Suppose 𝑓 and 𝑔 are functions from (𝑎, 𝑏) to R
which are both differentiable at 𝑐 ∈ (𝑎, 𝑏). Show that the following are true.

1. The function ( 𝑓 + 𝑔) (𝑥) = 𝑓 (𝑥) + 𝑔(𝑥) is differentiable at 𝑐, and

𝑑( 𝑓 + 𝑔)
𝑑𝑥

����
𝑥=𝑐

=
𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

+ 𝑑𝑔

𝑑𝑥

����
𝑥=𝑐

2. For any constant 𝑘 ∈ R, the function 𝑘 𝑓 (𝑥) is differentiable at 𝑐, and

𝑑(𝑘 𝑓 )
𝑑𝑥

����
𝑥=𝑐

= 𝑘 · 𝑑 𝑓
𝑑𝑥

����
𝑥=𝑐

Exercise 4.1.7 (The Product Rule). Suppose 𝑓 and 𝑔 are functions from (𝑎, 𝑏) to R which
are both differentiable at 𝑐 ∈ (𝑎, 𝑏). Show that the function ( 𝑓 · 𝑔) (𝑥) = 𝑓 (𝑥) · 𝑔(𝑥) is also
differentiable at 𝑐, and moreover that the following holds:

𝑑( 𝑓 · 𝑔)
𝑑𝑥

����
𝑥=𝑐

= 𝑓 (𝑐) · 𝑑𝑔
𝑑𝑥

����
𝑥=𝑐

+ 𝑔(𝑐) · 𝑑 𝑓
𝑑𝑥

����
𝑥=𝑐

Notation 4.1.8. When a function is differentiable at every point in its domain, we simply say
the function is differentiable. In this case, we simply write 𝑑 𝑓

𝑑𝑥
to denote the function whose

value at 𝑐 is given by
𝑑 𝑓

𝑑𝑥
(𝑐) = 𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

This function is referred to as the derivative of 𝑓 .

Exercise 4.1.9 (The Power Rule). Show that the function 𝑓 (𝑥) = 𝑥 is everywhere differentiable.
Using this and the above, show that the function 𝑓 (𝑥) = 𝑥𝑛 is everywhere differentiable, and
moreover show that

𝑑(𝑥𝑛)
𝑑𝑥

= 𝑛𝑥𝑛−1

Warning 4.1.9.

The derivative of a continuous function, when it exists, is not necessarily itself continuous!
We will see an example of the same in this week’s homework.
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4.2 Lecture 12: Linear Approximations, Critical Points, and the Mean Value
Theorem

Learning Objectives

By the end of this lecture, we will be able to:

• Explain why maxima and minima are “critical points” of a differentiable function.

• State and prove the Mean Value Theorem

• Explain the “linear approximation” perspective on the derivative.

4.2.1 Linear approximations

Last time, I had you define what it means for a function to be differentiable as well as prove
the basic properties of the derivative. This gave us one answer to the following question:

Question. What is the derivative of a function?

Our first answer: a measure of its instantaneous rate of change. Before proceeding, I want to
offer us a rather different perspective on the same: that the derivative of a function is the best
“linear approximation” of a function.

Let us first note the following fact.

Observation 4.2.1 (Linear functions are exactly the functions with constant derivative). Let
𝑓 (𝑥) = 𝑚𝑥+𝑐 a linear function of slope 𝑚 and intercept 𝑐. The slope is exactly the rate of change
between any two points, which is the constant fixed value 𝑚. From the algebraic properties
of the previous lecture we have that 𝑓 is everywhere differentiable, and that 𝑑 𝑓

𝑑𝑥
(𝑥) = 𝑚 the

constant function at 𝑚. Thus, linear functions have a constant rate of change. It is not hard to
convince yourself that if a function 𝑔 had the derivative 𝑑𝑔

𝑑𝑥
being a constant function, then 𝑔

must have been linear. We will deduce this as a consequence of the mean value theorem later.

We want to take the perspective that the derivative of a function is its best linear approxima-
tion. Suppose a function 𝑓 : (𝑎, 𝑏) → R is differentiable at a point 𝑐 ∈ (𝑎, 𝑏). The derivative at
𝑐 is computed through the following equation:

𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

= lim
ℎ→0

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐)
ℎ

The linear approximation to 𝑓 at 𝑐 is the unique function specified by

𝑔(𝑐 + ℎ) = 𝑓 (𝑐) + 𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

· ℎ

Written as a function in 𝑥, we may present it as 𝑔(𝑥) = 𝑓 (𝑐) + 𝑑 𝑓

𝑑𝑥

����
𝑐

· (𝑥 − 𝑐).
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Figure 21: A depiction of the linear approximation to 𝑓 at the point 𝑐.

If 𝑓 were a linear function, then 𝑓 and 𝑔 would coincide by Observation 4.2.1. However, in
general, they differ. To measure their exact difference, we define the following “error function”

𝐸(ℎ) = 𝑓 (𝑐 + ℎ) − 𝑔(𝑐 + ℎ) = 𝑓 (𝑐 + ℎ) − 𝑓 (𝑐) − 𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

· ℎ

for any given ℎ, the error function above measures the difference between

• The value of 𝑔(𝑐 + ℎ) for 𝑔 a linear function of slope exactly 𝑑 𝑓

𝑑𝑥

����
𝑐

passing through the

point (𝑐, 𝑓 (𝑐)). This would be the value of 𝑓 (𝑐 + ℎ) if it were actually a linear function.

• The actual value of 𝑓 (𝑐 + ℎ), which may differ since 𝑓 is not a linear function.

Figure 22: A depiction of the error function as the difference between a linear function of slope
𝑑 𝑓

𝑑𝑥

��
𝑥=𝑐

passing through (𝑐, 𝑓 (𝑐)) and the actual value of 𝑓 (𝑐)

55



To justify that this is the “best possible approximation”, we will show that the error function
𝐸(ℎ) in general goes to 0 faster than any linear function would; in this way, “to first order”,
the function 𝑓 looks like its linear approximation in a neighborhood around 𝑐. Consider the
following sequence of manipulations.

𝑓 (𝑐 + ℎ) = 𝑓 (𝑐) + 𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

· ℎ + 𝐸(ℎ) =⇒ 𝑓 (𝑐 + ℎ) − 𝑓 (𝑥) = 𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

· ℎ + 𝐸(ℎ)

Applying
1

ℎ
· to both sides =⇒ 𝑓 (𝑐 + ℎ) − 𝑓 (𝑥)

ℎ
=

𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

+ 𝐸(ℎ)
ℎ

Taking limits as ℎ → 0 =⇒ 𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

=
𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

+ lim
ℎ→0

𝐸(ℎ)
ℎ

Subtracting
𝑑 𝑓

𝑑𝑥

����
𝑥=𝑐

from both sides =⇒ 0 = lim
ℎ→0

𝐸(ℎ)
ℎ

This last line, that limℎ→0
𝐸 (ℎ)
ℎ

= 0, is our justification for the linear approximation being
the “best possible approximation by a linear function”: the error term, which measures the
difference between the two, goes to 0 at a rate faster than the linear function ℎ.

Exercise 4.2.2. Check that limℎ→0
𝐸 (ℎ)
𝐿(ℎ = 0 for any linear function 𝐿 in ℎ. You may assume

the case where 𝐿(ℎ) = ℎ.

Definition 4.2.3. Let 𝑓 : (𝑎, 𝑏) → R be differentiable at a point 𝑐 ∈ (𝑎, 𝑏). The graph of the
linear approximation to 𝑓 (𝑥) at 𝑐, i.e., the function 𝑔(𝑥) = 𝑓 (𝑐) + 𝑑 𝑓

𝑑𝑥

��
𝑥=𝑐

· (𝑥 − 𝑐), is also known
as the tangent line to 𝑓 (𝑥) at the point 𝑐.

4.2.2 Critical Points, Maxima and Minima, and the Mean Value Theorem

Notation 4.2.4. Henceforth, if a function 𝑓 : (𝑎, 𝑏) → R is differentiable at every point in its
domain, we will use the notation

𝑓 ′(𝑥) ≔ 𝑑 𝑓

𝑑𝑥
: (𝑎, 𝑏) → R

to denote the derivative of 𝑓 as a function in (𝑎, 𝑏).
For the rest of this subsection, let 𝑓 : (𝑎, 𝑏) → R be a function that is differentiable at every

point in its domain. Our first result is the following.

Key Theorem 4.2.5 (Extremal Points are Critical Points).

Suppose 𝑓 attains a local maximum at some point 𝑐 ∈ (𝑎, 𝑏). That is, suppose ∃𝜖 > 0 so
that ∀𝑥 ∈ (𝑐 − 𝜖, 𝑐 + 𝜖), 𝑓 (𝑥) ≤ 𝑓 (𝑐). Then 𝑓 ′(𝑐) = 0.

Definition 4.2.6. We call a point where 𝑓 ′ = 0 critical point of the function 𝑓 .

Proof. Consider the sequence 𝑥𝑛 = {𝑐 − 1
𝑛
; for some sufficiently large 𝑁, this sequence is strictly

between 𝑎 and 𝑐. Since 𝑓 is differentiable at 𝑐, we have that

𝑓 ′(𝑐) = lim
𝑁≤𝑛→∞

𝑓 (𝑥𝑛) − 𝑓 (𝑐)
𝑥𝑛 − 𝑐
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However, since 𝑓 (𝑐) is a maximum, the numerator 𝑓 (𝑥𝑛) − 𝑓 (𝑐) ≤ 0, while the denominator
is equal to −1

𝑛
and also less than 0. Thus, the RHS of the above is a sequence which is ≤ 0,

implying that its limit is also ≤ 0 and that 𝑓 ′(𝑐) ≤ 0.
Similarly, consider the sequence 𝑥′𝑛 = {𝑐 + 1

𝑛
. Applying the same trick for this sequence, we

obtain that that 𝑓 ′(𝑐) ≥ 0. It follows that 𝑓 ′(𝑐) = 0. □

Remark 4.2.7. The same argument works in the case where 𝑐 is a minimum; alternatively, if 𝑐
is a minimum of 𝑓 then it is a maximum of the function − 𝑓 , and the linearity of the derivative
yields the desired claim.

Figure 23: A depiction of the linear approximation to 𝑓 at a maximal point 𝑐 ∈ (𝑎, 𝑏)

The figure above demonstrates that at a critical point, the function up to linear approximation
appears to be constant. This gives an nice immediate proof of the following fact, which is the
base case of a more general fact.

Theorem 4.2.8 (Rolle’s Theorem). Suppose 𝑓 : [𝑎, 𝑏] → R is differentiable on (𝑎, 𝑏). Suppose
also that 𝑓 (𝑎) = 𝑓 (𝑏) = 0. Then there exists a point 𝑐 ∈ (𝑎, 𝑏) so that 𝑓 ′(𝑐) = 0, i.e., a critical
point of 𝑓 .

Proof. Any differentiable function is continuous, and any continuous function on a closed interval
attains both a maximum and a minimum by the Extreme Value Theorem (Theorem 3.3.6).
If the maximum and minimum do not occur at 𝑎 or 𝑏, we are done by the previous theorem.
There is only one other case, and we write this out below.

Case 1, the maximum of 𝑓 is strictly bigger than 0: Then the maximum of 𝑓

occurs at some point 𝑐 ∈ (𝑎, 𝑏) since 𝑓 (𝑎) = 𝑓 (𝑏) = 0, and this is a critical point by the
previous theorem.

Case 2, the minimum of 𝑓 is strictly less than 0: Then the minimum of 𝑓 occurs
at some point 𝑐 ∈ (𝑎, 𝑏) since 𝑓 (𝑎) = 𝑓 (𝑏) = 0, and this is a critical point by the previous
theorem.

Case 3, the maximum and minimum of 𝑓 are both 0: In this case the function is
constant at 0, and the derivative is everywhere 0 so any point works.
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This concludes the proof. □

Rolle’s theorem is a special case of a much more powerful fact, itself implied by Rolle’s
Theorem. This will be of vital importance in the following lectures.

Key Theorem 4.2.9 Mean Value Theorem.

Suppose 𝑓 : [𝑎, 𝑏] → R is differentiable on (𝑎, 𝑏). Then there exists a point 𝑐 ∈ (𝑎, 𝑏)
so that

𝑓 ′(𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

i.e., the instantaneous rate of change at 𝑐 is equal to the average rate of change between
𝑎 and 𝑏.

Proof. Let 𝑚 =
𝑓 (𝑏)− 𝑓 (𝑎)

𝑏−𝑎 , and consider the function 𝑔(𝑥) = 𝑚(𝑥 − 𝑎) + 𝑓 (𝑎); this is the unique
linear function whose graph is the line passing through (𝑎, 𝑓 (𝑎)) and (𝑏, 𝑓 (𝑏)).

Then the function ( 𝑓 − 𝑔) (𝑥) satisfies ( 𝑓 − 𝑔) (𝑎) = 𝑓 (𝑎) − 𝑔(𝑎) = 𝑓 (𝑎) − 𝑓 (𝑎) = 0, and
similarly ( 𝑓 − 𝑔) (𝑏) = 0. Since this is a sum of differentiable functions, it is differentiable, and
Rolle’s Theorem implies that there is a point 𝑐 ∈ (𝑎, 𝑏) so that ( 𝑓 − 𝑔)′(𝑐) = 0.

Expanding this, we find that 𝑓 ′(𝑐) − 𝑔′(𝑐) = 0; however, since 𝑔 is linear, we have that
𝑔′(𝑐) = 𝑚 =

𝑓 (𝑏)− 𝑓 (𝑎)
𝑏−𝑎 by Observation 4.2.1. It follows that 𝑓 ′(𝑐) = 𝑓 (𝑏)− 𝑓 (𝑎)

𝑏−𝑎 , which was the
desired result. □

Figure 24: A depiction of the mean value theorem between 𝑎 and 𝑏.

The mean value theorem has loads of applications, not least of all the following useful fact,
promised in Observation 4.2.1.

Corollary 4.2.10. Suppose 𝑓 : [𝑎, 𝑏] → R is a differentiable function on (𝑎, 𝑏) so that 𝑓 ′ = 𝑚

a constant function at some value 𝑚. Then 𝑓 must be a linear function.
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Proof. Assume towards a contradiction that 𝑓 is not a linear function. Consider the linear
approximation of 𝑓 at any point 𝑐, given by 𝑔(𝑥) = 𝑓 (𝑐) + 𝑚(𝑥 − 𝑐). Since 𝑓 is not linear,
there must exist some point 𝑑 ≠ 𝑐 ∈ (𝑎, 𝑏) so that 𝑓 (𝑑) ≠ 𝑔(𝑑), which in particular means that
𝑓 (𝑑) − 𝑓 (𝑐) ≠ 𝑔(𝑑) − 𝑔(𝑐) since 𝑓 (𝑐) = 𝑔(𝑐).

However, this implies that

𝑓 (𝑑) − 𝑓 (𝑐)
𝑑 − 𝑐

≠
𝑔(𝑑) − 𝑔(𝑐)

𝑑 − 𝑐
= 𝑚.

By the mean value theorem, there must exist some point 𝐿 in between 𝑑 and 𝑐 so that
𝑓 ′(𝐿) = 𝑓 (𝑑)− 𝑓 (𝑐)

𝑑−𝑐 ≠ 𝑚.
Contradiction! We assumed that 𝑓 ′ was the constant function at 𝑚, and hence 𝑓 must have

been linear. □

4.2.3 Linear approximations after the mean value theorem

Let 𝑓 : [𝑎, 𝑏] → R be a function that is differentiable on (𝑎, 𝑏). Recall that the linear
approximation of 𝑓 at some point 𝑐 is given by the function

𝑔(𝑥) = 𝑓 (𝑐) + 𝑓 ′(𝑐) (𝑥 − 𝑐)

and for ℎ sufficiently small (so that 𝑥 + ℎ is in the domain of 𝑓 ) we have the relation

𝑓 (𝑐 + ℎ) = 𝑔(𝑐 + ℎ) + 𝐸(ℎ) = 𝑓 (𝑐) + 𝑓 ′(𝑐) · ℎ + 𝐸(ℎ)

for 𝐸(ℎ) an error term to the linear approximation.

Observation 4.2.11. Given two points 𝑐, 𝑐 + ℎ ∈ (𝑎, 𝑏), the mean value theorem states that
there is some point 𝑑 in between 𝑐 and 𝑐 + ℎ so that

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐)
ℎ

= 𝑓 ′(𝑑)

and in particular that 𝑓 (𝑐 + ℎ) = 𝑓 (𝑐) + 𝑓 ′(𝑑) · ℎ

Thus, we have two expressions for 𝑓 (𝑥 + ℎ) for a given ℎ:

1. 𝑓 (𝑐 + ℎ) = 𝑔(𝑐 + ℎ) + 𝐸(ℎ) = 𝑓 (𝑐) + 𝑓 ′(𝑐) · ℎ + 𝐸(ℎ)

2. 𝑓 (𝑐 + ℎ) = 𝑓 (𝑐) + 𝑓 ′(𝑑) · ℎ for some 𝑑 in between 𝑐 and 𝑐 + ℎ

Expression (2) is called the Lagrange error bound . It says that even though there is an error
term to the expression “ 𝑓 (𝑥 +ℎ) = 𝑓 (𝑐) + 𝑓 ′(𝑐) ·ℎ”, this is rectified if one works with a derivative
of a point somewhere between 𝑥 and 𝑥 + ℎ.
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Figure 25: A depiction of the Lagrange error bound

If 𝑓 ′ is a continuous function, then as ℎ gets smaller, the values of 𝑓 ′(𝑑) become closer to
𝑓 ′(𝑐) for points 𝑑 between 𝑐 and 𝑐 + ℎ; this is another manifestation of the fact that the linear
approximation to 𝑓 is “a good approximation in a small neighborhood of 𝑐”.

Remark 4.2.12. In the next class, we will explore how to use the derivative to do better than
just linearly approximate: we are oing to polynomially approximate!

60



4.3 Homework 3 (Due Friday, October 24th)

3 out of the following 6 exercises graded for correctness, the remainder will be graded for
completeness. I have marked the graded ones with an asterisk (∗). This homework is out of a
possible 24 points, with the graded exercises worth 6 points and the ungraded exercises worth
2 points each.

Finally, don’t expect to be able to do everything in this homework immediately! I expect
you to return to this once or twice with a group as we progress through the course over the
next two weeks.

Exercise 4.3.1. Show that the function 𝑓 (𝑥) = 𝑠𝑖𝑛(𝑥) is differentiable on all of R, then
compute its derivative. (You’ll need to use the formula for sin of the sum of angles).

Exercise 4.3.2. (∗) Do [Abb15, Exercise 5.2.12].

Exercise 4.3.3. (∗) Do part (a) of [Abb15, Exercise 5.3.5]. Using this, do both parts of [Abb15,
Exercise 5.3.11].

Exercise 4.3.4. Suppose 𝑓 : [0, 𝑎] → R is 𝑛-times differentiable, 𝑓 (0) = 0, and | 𝑓 (𝑛) (𝑥) | ≤ 𝑀

for all 𝑥 ∈ [0, 𝑎]. Show that

| 𝑓 (𝑥) | ≤ 𝑀

𝑛 + 1!
𝑥𝑛

for every 𝑥 ∈ [0, 𝑎].
Exercise 4.3.5 (Some further tests for convergence). (∗) Prove the following for infinite series.

1. Prove the limit comparison test for infinite series: if {𝑎𝑛} and {𝑏𝑛} are two sequences
satisfying ���� lim𝑛→∞

𝑎𝑛

𝑏𝑛

���� < ∞

then the infinite series
∑

𝑎𝑛 converges if and only if
∑

𝑏𝑛 converges.

2. Prove the ratio test for infinite series: if {𝑎𝑛} is a sequence satisfying���� lim𝑛→∞
𝑎𝑛+1
𝑎𝑛

���� = 𝑟 < 1

then the infinite series
∑

𝑎𝑛 converges.

3. Prove the root test for infinite series: if {𝑎𝑛} is a sequence satisfying

lim
𝑛→∞

|𝑎𝑛 |
1
𝑛 < 1

Then the series
∑

𝑎𝑛 converges. Show that if this limit is greater than 1, then the series
diverges.

Exercise 4.3.6. Show Cauchy’s convolution formula: if
∑

𝑎𝑛 and
∑

𝑏𝑛 are two convergent
series with limits 𝐴 and 𝐵, then one has the expression∑︁

𝑎𝑛 ·
∑︁

𝑏𝑛 =

∞∑︁
𝑛=0

(
𝑛∑︁

𝑘=0

𝑎𝑘 · 𝑏𝑛−𝑘

)
In particular, the series on the right converges to the limit 𝐴 · 𝐵.
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