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We let 2CAlg := CAlg(Catperf∞ )rig the ∞-category of 2-rings be the underlying (∞, 1)-
category of symmetric monoidal, stable, idempotent complete ∞-categories with a biexact
tensor product that are rigid, meaning every object is dualizable (here the symmetric
monoidal structure on Catperf∞ is that of [BGT13, 3.1]). In particular, for any object
K ∈ 2CAlg, the homotopy category ho(K) is canonically tensor-triangulated and rigid
[Bar+23, 5.12]. To any small tensor-triangulated category K0, one may equip the basic
open sets of its Balmer spectrum Spc(K0) with a "structure presheaf" of triangulated
categories [Bal02, §5], given by the following assignment:

U(a) 7→ K0(U(a)) := (K0/a)
♮

where U(a) ⊆ Spc(K0) is the basic open set corresponding to the primes which contain
a ∈ K0, K0/a denotes the Verdier quotient of K0 by the thick tensor-ideal generated by
a, and (−)♮ denotes idempotent completion.

Our first result demonstrates that for any K ∈ 2CAlg, the "structure presheaf" on
Spc(hoK) upgrades to a full structure sheaf valued in 2CAlg, with an appropriate locality
condition. We recall the following definition.

Definition 1. [Bal10, 4.1] A tensor-triangulated category K0 is called local if the thick
tensor ideal {0} ⊆ K0 is prime.

We now have the following:

Theorem 2. For K ∈ 2CAlg, there is a natural sheaf OK ∈ Shv2CAlg(Spc(hoK)) such
that for any a ∈ K, ho(OK(U(a))) = (hoK/⟨a⟩)♮. Furthermore, for every x ∈ Spc(hoK),
the homotopy category of its stalk OK,x is a local tt-category.

Remark 3. Any x ∈ Spc(hoK) corresponds to a prime tt-ideal P ⊆ K, and the homo-
topy category of the stalk OK,x is exactly (hoK/P)♮.

This motivates the following definition, which we write informally for the purpose of
exposition.
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Definition 4. The ∞-category Toploc2CAlg of locally 2-ringed spaces is the (∞, 1)-category
whose objects are pairs (X,OX) where X ∈ Top and OX ∈ Shv2CAlg(X) with local
stalks, with morphisms f : (X,OX) → (Y,OY ) given (roughly) by pairs

[f# : X → Y ] ∈ Top∆
1
, [f# : OY → f∗OX ] ∈ Shv2CAlg(Y )∆

1

where f# induces conservative functors on homotopy categories of stalks.

We will henceforth utilise the notation Spc(K) to refer to the locally 2-ringed space
(Spc(hoK),OK). Our next result provides both functoriality and a universal property
for Spc(K) among all locally 2-ringed spaces.

Theorem 5. The assignment K 7→ Spc(K) promotes to a fully faithful functor Spc(−) :
2CAlgop → Toploc2CAlg. Furthermore, for any X ∈ Toploc2CAlg, one has the following equiva-
lence

MapToploc2CAlg
(X, Spc(K)) ≃ Map2CAlg(K,Γ(X,OX))

via the map that takes a morphism f : X → Spc(K) to the induced map on global sections
of structure sheaves.

We note that the results above have been obtained independently by joint work of
Ko Aoki, Tobias Barthel, Tomer Schlank, and Greg Stevenson, using a slightly different
formulation.

We go on to apply the machinery above in proving a derived-geometric extension of a
classical result of Balmer-Thomason on the reconstruction of coherent schemes from their
categories of perfect complexes (stated in full generality as [KP17, 4.2.5]). To formulate
the same, we need the following definition.

Definition 6. We write SpcLRS(K) ∈ ToplocCAlg to denote the locally spectrally ringed
space given by (Spc(K),End1(OK)), where End1 : 2CAlg → CAlg denotes the functor
sending a 2-ring to the endomorphism ring spectrum of its unit object.

Remark 7. The fact that the spectrally ringed space above is locally spectrally ringed
is an observation originally made in [Bal10, 6.6]. Furthermore, the proposition preceding
this observation implies that one has a functor LRS : Toploc2CAlg → ToplocCAlg by sending
(X,OX) 7→ (X,End1(OX)).

Our main result is the following upgraded reconstruction result for a certain class of
spectral schemes.

Theorem 8. Let X ∈ SpSchnc be a nonconnective spectral scheme whose underlying
classical scheme X♡ is coherent and has affine diagonal. Then there is a canonical map
of locally spectrally ringed spaces γX : SpcLRS(PerfX) → X, satisfying the following:

1. Any open immersion of an affine spectral subscheme ι : Spec(R) ↪→ X, induces an
open inclusion U := SpcLRS(PerfR) ↪→ SpcLRS(PerfX), and the restriction γX|U :

SpcLRS(PerfR) → X is given by a composition SpcLRS(PerfR)
ρR−→ Spec(R)

ι−→ X.
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2. The map ρR is the affinization map associated to the locally spectrally ringed space
SpcLRS(PerfR), and in particular on underlying classically ringed spaces it recovers
the comparison map Spc(hoPerfR) → Spec(π0R) of [Bal10].

3. One has a natural equivalence

MapToplocCAlg
(SpcLRS(K),X) ≃ Map2CAlg(PerfX,K)

for any K ∈ 2CAlg.

We remark that parts (1) and (2) of the above theorem demonstrate that the Balmer
spectra of spectral schemes is fully determined by the comparison maps on each affine
patch, indicating that their Balmer spectra are governed by a "geometric direction" cor-
responding to the underlying classical scheme of X, and a "homotopy theoretic" direction
governed by the affine schemes in any chart.

Remark 9. We indicate a few example applications below.

1. From (1) and (2), one can immediately deduce that for any connective spectral
scheme satisfying the conditions of the theorem, the comparison map γ of the
theorem is surjective using the results of [Bal10, §7].

2. The full reconstruction for classical schemes as stated in [KP17, 4.2.5] is a direct
consequence of the reconstruction theorem above, combined with [Bal10, 8.1].

3. Given any locally even periodic spectral schemes whose underlying classical scheme
is regular noetherian and satisfies the conditions of the theorem, γ is an equivalence
(for example, by reformulating the results of [Mat15, §2] in terms of the comparison
maps ρR of (1) and (2).

We end by indicating an application of part (3) of the theorem above.

Corollary 10. Given any locally monogenic 2-ring K such that SpcLRS(K) is itself a
coherent nonconnective spectral scheme whose underlying classical scheme has affine di-
agonal, one has an equivalence of 2-rings

K ≃ PerfSpcLRS(K)

In particular, this yields an equivalence of tensor-triangulated categories upon passage to
homotopy categories.

A key example of categories satisfying the above include the principal blocks of any
∞-categorical enhancement of the stable module categories of a finite flat group scheme
G over a field k of characteristic p > 0, by results of [FP07]. Equivalences of this
form enable the computation of invariants in these categories using descent-theoretic
techniques based on the associated spectral scheme: these have been utilised in chromatic
homotopy theory to great effect, for example in the computation of the Picard group of
TMF via an étale descent spectral sequence as in [MS16], or in the classification of certain
Azumaya algebras for TMF as in [BMS22]. We end our discussion with two questions:
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Question 11. Can the Picard and Brauer groups of the principal blocks for stable
module categories be completely computed by a descent spectral sequence based on their
associated spectral schemes?

Question 12. Do the spectral schemes appearing in the equivalences above admit nat-
ural spectral moduli-theoretic interpretations? I am presently able to provide an affir-
mative answer only for elementary abelian groups.
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